
P V - W A V E 7 . 5

SOLVEHELPING CUSTOMERS COMPLEX PROBLEMSSOLVE

Application Developer’s Guide

Visual Numerics, Inc.

Visual Numerics, Inc. Visual Numerics, Inc. (France) S.A.R.L. Visual Numerics International, Ltd.
2500 Wilcrest Drive Tour Europe Suite 1
Suite 200 33 place des Corolles Centennial Court
Houston, Texas 77042-2579 Cedex 07 East Hampstead Road
United States of America 92049 PARIS LA DEFENSE Bracknell, Berkshire
713-784-3131 FRANCE RG 12 1 YQ
800-222-4675 +33-1-46-93-94-20 UNITED KINGDOM
(FAX) 713-781-9260 (FAX) +33-1-46-93-94-39 +01-344-458-700
http://www.vni.com e-mail: info@vni-paris.fr (FAX) +01-344-458-748
e-mail: info@boulder.vni.com e-mail: info@vniuk.co.uk

Visual Numerics, Inc. Visual Numerics International GmbH Visual Numerics Japan, Inc.
7/F, #510, Sect. 5 Zettachring 10 Gobancho Hikari Building, 4th Floor
Chung Hsiao E. Rd. D-70567 Stuttgart 14 Gobancho
Taipei, Taiwan 110 ROC GERMANY Chiyoda-Ku, Tokyo, 102
+886-2-727-2255 +49-711-13287-0 JAPAN
(FAX) +886-2-727-6798 (FAX) +49-711-13287-99 +81-3-5211-7760
e-mail: info@vni.com.tw e-mail: info@visual-numerics.de (FAX) +81-3-5211-7769

e-mail: vda-sprt@vnij.co.jp
VIsual Numerics S.A. de C.V. Visual Numerics, Inc., Korea
Cerrada de Berna 3, Tercer Piso Rm. 801, Hanshin Bldg.
Col. Juarez 136-1, Mapo-dong, Mapo-gu
Mexico, D.F. C.P. 06600 Seoul 121-050
Mexico Korea

© 1990-2001 by Visual Numerics, Inc. An unpublished work. All rights reserved. Printed in the USA.

Information contained in this documentation is subject to change without notice.

IMSL, PV- WAVE, Visual Numerics and PV-WAVE Advantage are either trademarks or registered trademarks of Visual Numerics, Inc.
in the United States and other countries.

The following are trademarks or registered trademarks of their respective owners: Microsoft, Windows, Windows 95, Windows NT, For-
tran PowerStation, Excel, Microsoft Access, FoxPro, Visual C, Visual C++ — Microsoft Corporation; Motif — The Open Systems Foun-
dation, Inc.; PostScript — Adobe Systems, Inc.; UNIX — X/Open Company, Limited; X Window System, X11 — Massachusetts
Institute of Technology; RISC System/6000 and IBM — International Business Machines Corporation; Java, Sun — Sun Microsystems,
Inc.; HPGL and PCL — Hewlett Packard Corporation; DEC, VAX, VMS, OpenVMS — Compaq Computer Corporation; Tektronix 4510
Rasterizer — Tektronix, Inc.; IRIX, TIFF — Silicon Graphics, Inc.; ORACLE — Oracle Corporation; SPARCstation — SPARC Interna-
tional, licensed exclusively to Sun Microsystems, Inc.; SYBASE — Sybase, Inc.; HyperHelp — Bristol Technology, Inc.; dBase — Bor-
land International, Inc.; MIFF — E.I. du Pont de Nemours and Company; JPEG — Independent JPEG Group; PNG — Aladdin
Enterprises; XWD — X Consortium. Other product names and companies mentioned herein may be the trademarks of their respective
owners.

IMPORTANT NOTICE: Use of this document is subject to the terms and conditions of a Visual Numerics Software License
Agreement, including, without limitation, the Limited Warranty and Limitation of Liability. If you do not accept the terms of the
license agreement, you may not use this documentation and should promptly return the product for a full refund. Do not make illegal
copies of this documentation. No part of this documentation may be stored in a retrieval system, reproduced or transmitted in any form
or by any means without the express written consent of Visual Numerics, unless expressly permitted by applicable law.

 i

Table of Contents

Preface vii

What’s in this Manual vii

Conventions Used in this Manual ix

Technical Support x

Chapter 1: Accessing the Operating System 1
Manipulating Environment Variables 2

Manipulating OpenVMS Logicals and Symbols 5

Accessing the Operating System Using SPAWN 7

Changing the Current Working Directory 13

Chapter 2: Interapplication Communication for UNIX and
OpenVMS 15

Methods of Interapplication Communication 15

Choosing the Best Method 17

Interapplication Communication Using SPAWN 19

Executing PV-WAVE Commands Externally 22

Using LINKNLOAD to Call External Programs 27

Calling PV-WAVE in a Statically Linked Program 37

Using wavevars() to Access PV-WAVE Variables 50

Special Considerations for Noninteractive Applications 57

Communication with Remote Procedure Calls (UNIX Only) 59

Remote Procedure Call Examples 72

Interapplication Communication Using the Socket OPI 86

Chapter 3: Interapplication Communication for Windows

ii Application Developer’s Guide

93
Methods of Interapplication Communication 93

Choosing the Best Method 94

Using LINKNLOAD to Call External Programs 96

Calling PV-WAVE as a Dynamically Linked Program 98

Accessing Data in PV-WAVE Variables 109

Special Considerations for Noninteractive Applications 114

Using Dynamic Data Exchange (DDE) 116

Console Versus Windows Subsystem Applications 119

Chapter 4: Building VDA Tools 121
What Are VDA Tools? 121

A Technical Perspective on VDA Tools 124

What is the VDA Tools Manager? 126

VDA Tool Ingredients 130

VDA Utilities 139

Connecting to Online Help 140

Tool-to-Tool Communication Routines 141

Creating Optional Areas in VDA Tools 142

Creating a Navigator 146

Resources and Strings 148

Using Resources and Strings in PV-WAVE Applications 150

Adding Online Help 152

Chapter 5: Using WAVE Widgets 157
Methods of GUI Programming in PV-WAVE 157

Introduction to WAVE Widgets 161

First Example and Basic Steps 162

Initializing WAVE Widgets 164

 iii

Creating and Arranging WAVE Widgets 165

Creating and Handling Menus 173

Creating a Button Box and a Tool Box 179

Creating a Radio Box 181

Creating a Controls Box with Sliders 182

Creating a Drawing Area 183

Creating a Text Widget 186

Creating a Scrolling List 189

Creating Popup Messages 190

Creating Dialog Boxes 193

Creating a File Selection Widget 196

Creating a Command Widget 198

Creating a Table Widget 200

Setting Colors and Fonts 201

Setting and Getting Widget Values 206

Passing and Retrieving User Data 207

Managing Widgets 209

Displaying Widgets and Processing Events 210

Programming Tips and Cautions 210

Application Example 211

Chapter 6: Using the Widget Toolbox 217
Introduction to the Widget Toolbox 217

Basic Steps in Creating the GUI 218

Initializing the Widget Toolbox 219

Creating Widgets 219

Setting and Getting Resources 220

Managing, Displaying, and Destroying Widgets 221

Adding Callbacks (Motif Only) 222

iv Application Developer’s Guide

Adding Event Handlers 223

Adding Timers 224

Adding Work Procedures 226

Adding Input Handler Procedures (Motif Only) 226

Changing the Cursor 227

Creating Tables 228

Running an Application 228

Related Include Files 229

Example Widget Toolbox Application 229

Programming Tips and Cautions 231

Chapter 7: WAVE Widgets Reference 233

Chapter 8: Widget Toolbox Reference 363

Chapter 9: VDA Tools Manager API (Tm) 413

Chapter 10: Graphical Elements API (Tm) 473

Chapter 11: VDA Tools Utilities (Wo) 499

Chapter 12: Localizing PV-WAVE Applications 581
Localizing the VDA Tools 581

Localizing the PV-WAVE Home Window 584

Localizing the PV-WAVE Print Dialog Box 586

Appendix A: Motif Widget Classes A-1

Motif Widget Classes A-1

Convenience Widgets A-3

 v

Appendix B: Motif Callback Parameters B-1

Motif Callback Parameters B-1

Appendix C: Widget Toolbox Cursors C-1

Standard X Cursors C-1

Custom Cursors C-4

Appendix D: Developing Portable Applications D-1

Writing Portable WAVE Widgets Applications D-1

Writing Portable VDA Tools D-6

Writing System-specific Code D-8

Example Code D-9

Appendix E: Virtual Keys E-1

Appendix F: Windows Color and Font Support F-1

Predefined Colors for Windows Systems F-1

Setting Fonts on Windows F-3

Index 1

vi Application Developer’s Guide

vii

PREFACE

Preface
This manual is for application developers who want to create Visual Data Analysis
applications with a Graphical User Interface (GUI). A wide range of tools and tech-
nologies are available to the PV-WAVE application developer. Choosing the best
tools for your application is your first challenge. This manual contains introductory
information on interapplication communication, WAVE Widgets, the Widget Tool-
box, and VDA Tools. The detailed information you need to use these technologies
is in this manual as well.

What’s in this Manual
This manual covers the following topics:

• Chapter 1, Accessing the Operating System — Discusses the ways in which
you can manipulate environment variables, logicals, and symbols from within
PV-WAVE. In addition, the SPAWN command is introduced as a way to exe-
cute external programs from within PV-WAVE. Finally, ways to change the
current directory are discussed.

• Chapter 2, Interapplication Communication for UNIX and OpenVMS —
Discusses a variety of methods for interapplication communication. For exam-
ple, PV-WAVE can execute external programs and exchange data with them.
In addition, external programs can call PV-WAVE to perform graphics, data
manipulation, and other functions.

• Chapter 3, Interapplication Communication for Windows— Discusses a
variety of methods for interapplication communication available under
Windows.

viii Preface Application Developer’s Guide

• Chapter 4, Building VDA Tools — Describes VDA Tool architecture and out-
lines a method for building new VDA Tools.

• Chapter 5, Using WAVE Widgets — Discusses how to create a Motif GUI
using the WAVE Widgets functions.

• Chapter 6, Using the Widget Toolbox — Discusses how to create a Motif GUI
using the Widget Toolbox functions.

• Chapter 7, WAVE Widgets Reference — Detailed description of the WAVE
Widgets functions.

• Chapter 8, Widget Toolbox Reference — Detailed description of the Widget
Toolbox Functions.

• Chapter 9, VDA Tools Manager API (Tm) — Detailed description of the
basic set of Tools Manager API functions.

• Chapter 10, Graphical Elements API (Tm) — Detailed description of the
Tools Manager functions used specifically to create and manipulate Graphical
Elements.

• Chapter 11, VDA Tools Utilities (Wo) — Detailed description of the VDA
Tools Utilities, a set of convenience routines used to develop a VDA Tool user
interface quickly and efficiently.

• Chapter 12, Localizing PV-WAVE Applications — Explains how to localize
VDA Tools, the Home Window, and related applications.

• Appendix A, Motif Widget Classes — Lists the widget classes available under
Motif.

• Appendix B, Motif Callback Parameters — Lists the required callback
parameters for widget routines under Motif.

• Appendix C, Widget Toolbox Cursors — Lists the standard and custom cur-
sors that are available for use with the WtCursor function under Motif and
Windows.

• Appendix D, Developing Portable Applications — Discusses several portabil-
ity issues, particularly with respect to WAVE Widgets applications.

• Appendix E, Virtual Keys — Lists the symbolic constant names, hexadecimal
values, and keyboard equivalents for the virtual-key codes used by the
Microsoft Windows operating system.

• Appendix F, Windows Color and Font Support — Discusses color and font
support for WAVE Widgets on Windows platforms.

• Index — A subject index with hypertext links to information in this manual.

 ix

Conventions Used in this Manual
You will find the following conventions used throughout this manual:

• Code examples appear in this typeface. For example:

PLOT, temp, s02, Title = ’Air Quality’

• Code comments are shown in this typeface, immediately below the commands
they describe. For example:

PLOT, temp, s02, Title = ’Air Quality’

; This command plots air temperature data vs. sulphur
; dioxide concentration.

• Variables are shown in lowercase italics (myvar), function and procedure
names are shown in uppercase (XYOUTS), keywords are shown in mixed case
italic (XTitle), and system variables are shown in regular mixed case type (!Ver-
sion). For better readability, all application development routines are shown in
mixed case (WwMainMenu).

• A $ at the end of a line of PV-WAVE code indicates that the current statement
is continued on the following line. By convention, use of the continuation char-
acter ($) in this document reflects its syntactically correct use in PV-WAVE.
This means, for instance, that strings are never split onto two lines without the
addition of the string concatenation operator (+). For example, the following
lines would produce an error if entered literally in PV-WAVE.

WAVE> PLOT, x, y, Title = ’Average $
Air Temperatures by Two-Hour Periods’

; Note that the string is split onto two lines; an error
; message is displayed if you enter a string this way.

The correct way to enter these lines is:

WAVE> PLOT, x, y, Title = ’Average ’ + $
’Air Temperatures by Two-Hour Periods’

; This is the correct way to split a string onto two command lines.

• Reserved words, such as FOR, IF, CASE, are always shown in uppercase.

x Preface Application Developer’s Guide

Technical Support
If you have problems installing, unlocking, or running your software, contact
Visual Numerics Technical Support by calling:

Users outside the U.S., France, Germany, Japan, Korea, Mexico, Taiwan, and the
U.K. can contact their local agents.

Please be prepared to provide the following information when you call for consul-
tation during Visual Numerics business hours:

• Your license number, a six-digit number that can be found on the packing slip
accompanying this order. (If you are evaluating the software, just mention that
you are from an evaluation site.)

• The name and version number of the product. For example, PV-WAVE 7.0.

• The type of system on which the software is being run. For example, SPARC-
station, IBM RS/6000, HP 9000 Series 700.

• The operating system and version number. For example, HP-UX 10.2 or IRIX
6.5.

• A detailed description of the problem.

Office Location Phone Number

Corporate Headquarters
Houston, Texas 713-784-3131

Boulder, Colorado 303-939-8920

France +33-1-46-93-94-20

Germany +49-711-13287-0

Japan +81-3-5211-7760

Korea +82-2-3273-2633

Mexico +52-5-514-9730

Taiwan +886-2-727-2255

United Kingdom +44-1-344-458-700

 xi

FAX and E-mail Inquiries

Contact Visual Numerics Technical Support staff by sending a FAX to:

or by sending E-mail to:

Office Location FAX Number

Corporate Headquarters 713-781-9260

Boulder, Colorado 303-245-5301

France +33-1-46-93-94-39

Germany +49-711-13287-99

Japan +81-3-5211-7769

Korea +82-2-3273-2634

Mexico +52-5-514-4873

Taiwan +886-2-727-6798

United Kingdom +44-1-344-458-748

Office Location E-mail Address

Boulder, Colorado support@boulder.vni.com

France support@vni-paris.fr

Germany support@visual-numerics.de

Japan vda-sprt@vnij.co.jp

Korea support@vni.co.kr

Taiwan support@vni.com.tw

United Kingdom support@vniuk.co.uk

xii Preface Application Developer’s Guide

Electronic Services

Service Address

General e-mail info@boulder.vni.com

Support e-mail support@boulder.vni.com

World Wide Web http://www.vni.com

Anonymous FTP ftp.boulder.vni.com

FTP Using URL ftp://ftp.boulder.vni.com/VNI/

PV-WAVE
Mailing List: Majordomo@boulder.vni.com

To subscribe
 include:

subscribe pv-wave YourEmailAddress

To post messages pv-wave@boulder.vni.com

1

CHAPTER

1

Accessing the Operating System
This chapter discusses the methods for communicating with the operating system
from PV-WAVE. The main topics include:

• Manipulating environment variables (UNIX/Windows)

• Manipulating OpenVMS logicals and symbols

• Using SPAWN to access the operating system

• Changing the current directory

The utility routines used to communicate with specific operating systems are sum-
marized in the following table:

Routines for Accessing the Operating System

Method UNIX OpenVMS Win Use

SPAWN Yes Yes Yes Lets you spawn a child
process to execute
commands. The output
generated by the com-
mands can be captured
in a variable for later
processing by PV-
WAVE.

GETENV,
SETENV,
ENVIRONMENT

Yes No Yes Manipulate environ-
ment variables.

2 Application Developer’s Guide

Manipulating Environment Variables

NOTE It is important to realize that environment variables are not a PV-WAVE
feature, they are part of every UNIX and Windows process. Although they can
serve as a form of global memory, it is best to avoid using them in that way. Instead,
system variables and common blocks should be used in that role. This will make
your code portable to OpenVMS systems.

UNIX Environment Variables

Every UNIX process has an “environment”. The environment consists of “environ-
ment variables”, each of which has a string value associated with it. Some
environment variables always exist, such as path, which tells the shell where to
look for programs, or term which specifies the kind of terminal being used. You
may add other environment variables at any time from an interactive shell, or you
can add them to the file, such as the .login file, that is executed when you log in.

When a process is created, it is given a copy of the environment from its parent pro-
cess. PV-WAVE is no exception to this; when started, it inherits a copy of its
parent’s environment. The parent process to PV-WAVE is usually the interactive
shell from which it was started. In turn, any child process created by PV-WAVE
(such as those from the SPAWN procedure) inherits a copy of PV-WAVE’s current
environment.

SETLOG,
TRNLOG,
DELLOG

No Yes No Manipulate OpenVMS
logical names.

SET_SYMBOL,
GET_SYMBOL,
DELETE_SYMBOL

No Yes No Manipulate DCL inter-
preter symbols.

CD,
PUSHD,
POPD,
PRINTD

Yes Yes Yes Let you change the cur-
rent working directory.

Routines for Accessing the Operating System (Continued)

Method UNIX OpenVMS Win Use

 3

Environment variables should be used for communicating with child processes. For
example, you can change the SHELL environment variable prior to calling
SPAWN. SPAWN then uses the newly defined shell to run its process.

PV-WAVE provides the following procedures and functions for manipulating the
UNIX environment. For more information on these procedures and functions, see
the PV-WAVE Reference.

Windows Environment Variables

Environment variables define particular characteristics of your operating system
environment, such as important directory paths. For example, when PV-WAVE is
installed, several environment variables are automatically defined, such as the
%VNI_DIR% variable, which points to the main directory where Visual Numerics
products are installed.

Whenever a process is created, it is given a copy of the environment from its parent
process. PV-WAVE is no exception to this; when started, it inherits a copy of its
parent’s environment. The parent process to PV-WAVE is usually the Command
window from which it was started. In turn, any child process created by PV-WAVE
(such as those from the SPAWN procedure) inherits a copy of PV-WAVE’s current
environment.

PV-WAVE provides the following procedures and functions for manipulating envi-
ronment variables. For more information on these procedures and functions, see
the PV-WAVE Reference.

SETENV: Adding a New Environment Variable

The SETENV procedure adds a new environment variable, or changes the value of
an existing environment variable, in the PV-WAVE process. It has the form:

SETENV, environment_expression

where environment_expression is a scalar string containing an environment expres-
sion to be added to the environment.

UNIX Example

For example, you can change the shell used by SPAWN by changing the value of
the SHELL environment variable. A statement to change to the Bourne shell
/bin/sh is:

SETENV, ’SHELL=/bin/sh’

4 Application Developer’s Guide

Windows Example

For example, to change the HOMEPATH environment variable to point to the direc-
tory D:\users\chris\utah_data:

SETENV, ’HOMEPATH=D:\users\chris\utah_data’

GETENV: Getting an Environment Variable’s Equivalence
String

The GETENV function returns the value (equivalence string) of a specified envi-
ronment variable. It has the form:

result = GETENV(name)

where name is the name of the environment variable for which the value is desired.
If name does not exist in the environment, a null string is returned.

UNIX Example

For example, to determine the type of terminal being used, you can enter the
statement:

PRINT, ’The terminal type is:’, GETENV(’TERM’)

Executing this statement on a Sun workstation gives the result:

The terminal type is: sun

Windows Example

For example, to determine value of the HOMEPATH variable, you can enter the
statement:

PRINT, ’The value of HOMEPATH is:’, $
GETENV(’HOMEPATH’)

Executing this statement gives the result:

The value of HOMEPATH is: D:\users\chris

ENVIRONMENT: Getting the Values of All Environment
Variables

The ENVIRONMENT function returns a string array containing the values (equiv-
alence strings) of all the environment variables currently found in the PV-WAVE
process environment.

 5

UNIX Example

The following statements print the entire environment, one environment variable
per line:

WAVE> env = ENVIRONMENT()

; Get a copy of the environment.

WAVE> FOR I = 0, N_ELEMENTS(env)-1 $
DO PRINT, env(I)

; Print out, one variable per line.

Windows Example

The following statements print the entire environment, one environment variable
per line:

WAVE> env = ENVIRONMENT()

; Get a copy of the environment.

WAVE> FOR I = 0, N_ELEMENTS(env)-1 $
DO PRINT, env(I)

; Print out, one variable per line.

Manipulating OpenVMS Logicals and Symbols
PV-WAVE provides the following procedures and functions for manipulating
OpenVMS logicals and symbols. For more information on these procedures and
functions, see the PV-WAVE Reference.

SETLOG: Defining a New Logical

The SETLOG procedure defines a logical name. It has the form:

SETLOG, lognam, value

where lognam is the scalar string containing the name of the logical to be defined
and value is a string giving the value to which the logical will be set. If value is a
string array, lognam is defined as a multi-valued logical where each element of
value defines one of the equivalence strings.

TRNLOG: Getting a Logical’s Equivalence String

The TRNLOG function searches the OpenVMS name tables for a specified logical
name and returns the equivalence string(s) in a variable. TRNLOG returns the

6 Application Developer’s Guide

OpenVMS status code associated with the translation as a longword value. As with
all OpenVMS status codes, success is indicated by an odd value (least significant
bit is set) and failure by an even value. It has the form:

result = TRNLOG(lognam, value)

where lognam is a scalar string containing the name of the logical to be translated
and value is a named variable into which the equivalence string is placed. If lognam
has more than one equivalence string, the first one is used.

The following statements allow you to see these values:

WAVE> ret = TRNLOG("SYS$SYSROOT", trans, $
/Full, /Issue_Error)

; Translate the logical.

WAVE> print, trans

DELLOG: Deleting a Logical

The DELLOG procedure deletes a logical name. It has the form:

DELLOG, lognam

where lognam is a scalar string containing the name of the logical to be deleted.

SET_SYMBOL: Defining a Symbol

The SET_SYMBOL procedure defines a DCL (Digital Command Language) inter-
preter symbol for the current process. It has the form:

SET_SYMBOL, name, value

where name is a scalar string containing the name of the symbol to be defined and
value is a scalar string containing the value with which name will be defined.

GET_SYMBOL: Getting a Symbol’s Value

The GET_SYMBOL function returns the value of an OpenVMS DCL (Digital
Command Language) interpreter symbol as a scalar string. If the symbol is unde-
fined, the null string is returned. It has the form:

result = GET_SYMBOL(name)

where name is a string containing the name of the symbol to translate.

 7

DELETE_SYMBOL: Deleting a Symbol

The DELETE_SYMBOL procedure deletes a DCL (Digital Command Language)
interpreter symbol from the current process. It has the form:

DELETE_SYMBOL, name

where name is a string containing the name of the symbol to delete.

Accessing the Operating System Using SPAWN
SPAWN is a very flexible command. It can create an interactive command inter-
preter (shell, for UNIX users) process, or simply issue a single command and
return. Under UNIX, in this second case, the command can either be passed to a
shell for processing, or it can be executed directly as a child process of PV-WAVE.

Under Windows, SPAWN can create a new Command window, or simply issue a
single command and return.

This section discusses SPAWN as it is used to issue commands and capture output.
For detailed information on how to use SPAWN to execute and transfer data to and
from a child process (external program), see Interapplication Communication
Using SPAWN on page 19.

Using SPAWN to Issue Commands

The SPAWN procedure spawns a child process to execute a given command. It has
the form:

SPAWN [, command [, result]]

The command parameter is a string containing the command to be issued.
command can be either a scalar or an array.

UNIX USERS The way in which it is treated depends on whether the Noshell key-
word is specified. For more information on Noshell, see Avoiding the Shell under
UNIX on page 11.

If the result parameter is not present, the output from the child process simply goes
to the standard output (usually the terminal). Otherwise, the output from the child
process is placed into a string array (one line of output per array element) and
assigned to result.

8 Application Developer’s Guide

Interactive Use of SPAWN

If SPAWN is called without arguments, an interactive shell (UNIX) or command
interpreter (OpenVMS) or Command window (Windows) is started. You can enter
one or more shell commands. While you use the shell or command interpreter pro-
cess, PV-WAVE is suspended. When you exit the child process, control returns to
PV-WAVE, which resumes at the point where it left off. The PV-WAVE session
remains exactly as you left it.

UNIX Example

The following statements demonstrate the interactive use of SPAWN.

An example of using SPAWN in a UNIX environment is:

WAVE> SPAWN

%date

Fri Aug 26 13:55:00 MDT 1988

%exit

WAVE>

OpenVMS Example

An example of using SPAWN in an OpenVMS environment is:

WAVE> SPAWN

$ SHOW TIME

29-JAN-1990 16:32:23

$ LOGOUT

WAVE>

Windows Example

The following statements demonstrate the interactive use of SPAWN.

WAVE> SPAWN

; At this point, a Command window appears, and you can enter a
; command, such as the date command.

D:\vni\wave> date

The current date is: Fri 07/16/1993

Enter the new date: <mm-dd-yy>

D:\vni\wave> exit

; The exit command exits the Command window and returns you to
; the PV-WAVE session.

WAVE>

 9

NOTE Using SPAWN in this manner is equivalent to using the $ command. The
difference between these two is that $ can only be used interactively, while SPAWN
can be used interactively or in PV-WAVE programs.

UNIX Shells

The most common UNIX shells are the Bourne shell (/bin/sh), the C shell
(/bin/csh), and the Korn shell (/bin/ksh). Rather than force you to use a
given shell, PV-WAVE follows the UNIX convention of using the shell specified by
the UNIX environment variable SHELL. If SHELL does not exist, the Bourne shell
is used. The UNIX environment is discussed in Manipulating Environment Vari-
ables on page 2 in this chapter.

Under UNIX, the interactive form of SPAWN is provided primarily for users of the
Bourne shell and for compatibility with OpenVMS. Shells that offer process sus-
pension (e.g., /bin/csh) offer a more convenient and efficient way to get the
same effect.

VMS Command Interpreter

Under OpenVMS, the command interpreter is always DCL (Digital Command
Language).

Avoiding the Command Prompt Window (Windows)

As mentioned above, SPAWN usually creates a command prompt window and
passes the command to it, instead of simply creating a child process to directly exe-
cute the command. This default action is taken because the command prompt
window provides useful actions such as wildcard expansion and argument process-
ing. Although this is usually desirable, creating a command prompt window
process has the drawback of being slower than necessary; it simply takes longer to
start a command prompt window. However, it is possible to avoid using the
command prompt window by using the Noshell keyword.

When SPAWN is called and Noshell is present and non-zero, the command is exe-
cuted as a direct child process, avoiding the extra overhead of starting a command
prompt window. This is faster, but since there is no command prompt window to
break the command into separate arguments, you have to do it. Every Windows NT
program is called with a series of arguments. When you issue a command prompt
window command, you separate the arguments with white space (blanks and tabs).
The command prompt window then breaks up the command into an array of argu-

10 Application Developer’s Guide

ments, and calls the command (the first word of the command), passing it the array
of arguments.

Thus, if you use Noshell to avoid using a command prompt window, you have to
break up the arguments yourself. In this case, the command argument should be a
string array. The first element of the array is the name of the command to use, and
the following elements contain the arguments.

For example, consider the command:

WAVE> SPAWN, ’dir c:\reports /a:h’

To issue this command without a shell, you write it as:

WAVE> SPAWN,[’dir’ ’c:\reports’ ’/a:h’], /Noshell

Non-interactive Use of SPAWN

If SPAWN is called with a single argument, that argument is taken as a command
to be executed. In this case, PV-WAVE starts a child process and passes the
command to it. The argument should be a scalar string. The child process executes
the command and exits, at which point PV-WAVE resumes operation. This form of
operation is very convenient for executing single commands from PV-WAVE pro-
grams. For example, it is sometimes useful to delete a temporary scratch file.
SPAWN can be used as shown in the following program fragment.

UNIX/OpenVMS Example

OPENW, Unit, ’scratch.dat’, /Get_Lun

; Open the scratch file. Use the Get_Lun keyword to allocate a file
; unit.

. . .

; PV-WAVE commands that use the file go here.

FREE_LUN, Unit

; Deallocate the file unit and close the file.

if (!Version.os EQ 'vms’) THEN $
Cmd = ’DELETE’ else Cmd = ’rm’

; Use the !Version system variable to determine the proper file
; deletion command for the current operating system.

SPAWN, Cmd + ’scratch.dat’

; Delete the file using SPAWN.

Windows Example

OPENW, Unit, ’scratch.dat’, /Get_Lun

 11

; Open the scratch file. Use the Get_Lun keyword to allocate a file
; unit.

. . .

; PV-WAVE commands that use the file go here.

FREE_LUN, Unit

; Deallocate the file unit and close the file.

SPAWN, ’ERASE scratch.dat’

; Delete the file using SPAWN.

NOTE Actually, the Delete keyword to the OPEN procedure is a more efficient
way to handle this job. The above examples serve only to demonstrate the use of
the SPAWN procedure.

Avoiding the Shell under UNIX

As mentioned above, SPAWN usually creates a shell process and passes the
command to this shell, instead of simply creating a child process to directly execute
the command. This default action is taken because the shell provides useful actions
such as wildcard expansion and argument processing. Although this is usually
desirable, creating a shell process has the drawback of being slower than necessary;
it simply takes longer to start a shell. However, it is possible to avoid using the shell
by using the Noshell keyword.

When SPAWN is called and Noshell is present and non-zero, the command is exe-
cuted as a direct child process, avoiding the extra overhead of starting a shell. This
is faster, but since there is no shell to break the command into separate arguments,
you have to do it. Every UNIX program is called with a series of arguments. When
you issue a shell command, you separate the arguments with white space (blanks
and tabs). The shell then breaks up the command into an array of arguments, and
calls the command (the first word of the command), passing it the array of
arguments.

Thus, if you use Noshell to avoid using a shell, you have to break up the arguments
yourself. In this case, the command argument should be a string array. The first ele-
ment of the array is the name of the command to use, and the following elements
contain the arguments.

For example, consider the command:

WAVE> SPAWN, ’ps ax’

which uses the UNIX ps command to show running processes on the computer. To
issue this command without a shell, you write it as:

12 Application Developer’s Guide

WAVE> SPAWN, [’ps’, ’ax’], /Noshell

Capturing Output

By default, any output generated by the spawned command is sent to the standard
output, which is usually the terminal. It is possible to capture this output in a string
array by calling SPAWN with a second argument. If this second argument, called
result, is present, all output from the child process is put into a string array, one line
of output per array element, and is assigned to result.

UNIX/OpenVMS Example

For example, the following statements can be used to give a simplistic count of the
number of users logged onto the computer:

if (!Version.os EQ ’vms’) THEN $
Cmd = ’SHOW USERS’ ELSE Cmd = ’who’

; Use the !Version system variable to determine the command
; to use.

SPAWN, Cmd, Users

; Issue the command; catch the result in a string array.

N = N_ELEMENTS(Users)

; Count how many lines of output cue back. Under UNIX, this is the
; number of users logged in.

if (!Version.os EQ ’vms’) THEN N = N - 5

; OpenVMS outputs five extra header lines which are not actual
; users.

PRINT, ’There are ’, N, ’ users logged on.’

; Give the result.

Windows Example

For example, the following statements can be used to capture the current environ-
ment variable settings in a variable:

SPAWN, ’set’, vars

; Issue the command; catch the result in a string array.

PRINT, vars

; List the environment variables in the PV-WAVE Console window.

 13

Changing the Current Working Directory
Like every process, PV-WAVE has a current working directory. This is the default
directory that is used whenever you specify a file without explicitly supplying the
directory. The initial working directory is the directory you were in when you
issued the command to start PV-WAVE.

Using the CD Procedure

You can use the CD command to change this working directory at any point during
the PV-WAVE session. This new working directory affects the current session, and
any child processes that you start from PV-WAVE, but it does not change the cur-
rent directory of the process that started PV-WAVE. Therefore, when you exit PV-
WAVE, you will find yourself back in the directory you were in when you started.

On a UNIX system, to change the current directory to /usr/stardata, enter:

WAVE> CD, ’/usr/stardata’

On an OpenVMS system, to change the current directory to
SYS$SYSDEVICE:[STARDATA], enter:

WAVE> CD, ’SYS$SYSDEVICE:[STARDATA]’

On a Windows system, to change the current directory to \home\stardata,
enter:

WAVE> CD, ’\home\stardata’

In order to change to your login directory, you can provide a null argument. In addi-
tion, the Current keyword can be used to save the current directory before any
change is made. The following command saves the current directory and then
changes it to your home directory:

WAVE> CD, ’’, Current=OLDDIR

Later, you can restore the current directory to its previous value with the command:

WAVE> CD, OLDDIR

Using the PUSHD, POPD, and PRINTD Procedures

The PUSHD, POPD, and PRINTD procedures are provided to make interactive use
of CD more convenient by maintaining a stack of directories. PUSHD saves the
current directory on the top of the stack and then changes it to the directory given
by its argument. POPD sets the current directory to the directory at the top of the

14 Application Developer’s Guide

stack and removes that directory from the stack. PRINTD shows you the current
entries on the stack.

UNIX/OpenVMS Example

Using these user procedures, the previous CD example could be written:

WAVE> PUSHD, ’’

; Change to your home directory.

. . .

; Execute some statements.

WAVE> POPD

; Return to the original working directory.

Windows Example

Using these user procedures, the previous CD example could be written:

WAVE> PUSHD, ’c:\temp’

; Change the directory.

. . .

; Execute some statements.

WAVE> POPD

; Return to the original working directory.

15

CHAPTER

2

Interapplication Communication for
UNIX and OpenVMS

PV-WAVE provides a variety of methods for interapplication communication
under UNIX and OpenVMS. For example:

• PV-WAVE can execute external programs and exchange data with them.
Depending on the method used, the exchange of data can be unidirectional
(one-way) or bidirectional (two-way).

• External programs can call PV-WAVE to perform graphics, data manipulation,
and other functions. Again, depending on the method used, the communication
can be unidirectional or bidirectional.

Methods of Interapplication Communication
The following table summarizes the methods of interapplication communication
that can be used between PV-WAVE and other external applications. This table and
the following section, Choosing the Best Method on page 17, can help you to deter-
mine the most appropriate method of interapplication communication to
accomplish a desired task. Each method listed is described in detail later in this
chapter.

16 Application Developer’s Guide

Routines for Accessing the Operating System

Method UNIX OpenVMS Use

SPAWN Yes Yes A system routine that executes an external pro-
gram from within PV-WAVE. Allows data to be
transferred to and from PV-WAVE via bidirec-
tional pipes and PV-WAVE’s standard I/O facili-
ties. See page 19.

waveinit,
wavecmd
waveterm

Yes No Routines that allow a C or FORTRAN program to
start PV-WAVE, execute commands, and exit PV-
WAVE. No data is transferred back to the calling
program. Available on UNIX systems only. See
page 22.

LINKNLOAD Yes * Yes A system routine that allows PV-WAVE to call an
external function via dynamic linked libraries. It
is the simplest method for calling your own C
code from PV-WAVE. Allows the transfer of
binary data. Data is transferred between the C
program and PV-WAVE via the wavevars rou-
tine. See page 27.

cwavec Yes Yes A routine that allows a statically linked C pro-
gram to access PV-WAVE. Data is transferred
between the C program and PV-WAVE via the
wavevars routine. See page 37.

cwavefor Yes Yes Works like cwavec, except from a statically
linked FORTRAN program. See page 37.

Option
Programming
Interface (OPI)

Yes Yes For developers who want to create optional mod-
ules that can be loaded explicitly by any PV-
WAVE user. These optional modules can be writ-
ten in C or FORTRAN, and can contain new sys-
tem functions or other primitives. See the
PV-WAVE Programmer’s Guide for more infor-
mation.

CALL_UNIX Yes No A system routine that uses Remote Procedure
Call (RPC) technology to allow PV-WAVE to call
a separate application across a UNIX network.
See page 72.

CALL_WAVE Yes No A system routine that uses Remote Procedure
Call (RPC) technology to allow a separate appli-
cation to call PV-WAVE across a UNIX network.
See page 72.

 17

* Not currently available for all versions of UNIX.

Choosing the Best Method
It is important to select the most appropriate method of interapplication communi-
cation for your particular needs. Choosing the wrong method often requires much
more work than is necessary to accomplish a given task.

This section describes typical scenarios where some kind of interapplication com-
munication is required. After each scenario is described (in italics), a suitable
solution for interapplication communication is suggested.

I’m running PV-WAVE, and I want to execute an external program I’ve written. I’m
not really concerned about returning anything to PV-WAVE.

This is the simplest case of interapplication communication. The SPAWN proce-
dure is the best choice. SPAWN executes an external program, or an operating
system command, from PV-WAVE. (Although it is not a requirement in this sce-
nario, SPAWN can return data from the external application to PV-WAVE.)

For information on using SPAWN, see Interapplication Communication Using
SPAWN on page 19.

I’m on a UNIX system, and I just want to call PV-WAVE from my C or FORTRAN
program, execute some PV-WAVE commands, and exit PV-WAVE. It isn’t neces-
sary for my program to retrieve any data from PV-WAVE.

The routines waveinit, wavecmd, and waveterm can be used to accomplish
this sort of task. These routines, which are only available under UNIX, allow one-
way (unidirectional) communication from a C or FORTRAN application to PV-
WAVE. They start PV-WAVE, execute specified commands, and exit PV-WAVE.
No data is transferred back to the calling program.

For information on using waveinit, wavecmd, and waveterm, see Executing
PV-WAVE Commands Externally on page 22.

Socket OPI Yes Yes Allows you to treat network connections as
streams of bytes that can be read from or written
to. With the Socket OPI, you can write client and
server applications entirely in PV-WAVE. See
page 86.

Routines for Accessing the Operating System (Continued)

Method UNIX OpenVMS Use

18 Application Developer’s Guide

I wrote a C program, and I want to be able to link it dynamically with PV-WAVE.
My program needs to be able to access data directly from the data space of PV-
WAVE. When my program is finished running, I want control returned back to PV-
WAVE.

The LINKNLOAD procedure is the simplest method for attaching your own code
to PV-WAVE. LINKNLOAD is a system procedure that calls a function in an exter-
nal sharable object. When used in conjunction with the wavevars function, data
can be passed back and forth between the user-written routine and PV-WAVE.

For information on LINKNLOAD, see Using LINKNLOAD to Call External Pro-
grams on page 27. For information on the data transfer function wavevars see
Using wavevars() to Access PV-WAVE Variables on page 50.

NOTE See also the section Method 2: The Option Programming Interface on page
29. The Option Programming Interface (OPI) functions allow user-written code to
access PV-WAVE variables and use other PV-WAVE functionality. OPI provides
greater flexibility and control than wavevars.

I want to be able to call PV-WAVE from a C or FORTRAN program I’ve written. I
want the program to be statically linked with PV-WAVE.

The cwavec function allows a statically linked C program to access PV-WAVE’s
data space. Data is transferred between the C program and PV-WAVE via the
wavevars routine. In addition, the cwavefor function allows a statically linked
FORTRAN program to access PV-WAVE’s data space.

For information on cwavec and cwavefor see Calling PV-WAVE in a Statically
Linked Program on page 37. For information on the data transfer function
wavevars see Using wavevars() to Access PV-WAVE Variables on page 50.

I have an application running across the UNIX network that I want my PV-WAVE
program to communicate with.

Under UNIX, Remote Procedure Calls (RPCs) can be used to facilitate this kind of
communication.

For information on interapplication communication routines that support RPCs,
see Remote Procedure Call Examples on page 72.

 19

Interapplication Communication Using SPAWN
This section explains how to use SPAWN to communicate with a child process
(external program).

Communicating with a Child Process

In the previous chapter, the SPAWN procedure was used to start a child process and
execute PV-WAVE commands. The PV-WAVE process waited until the child pro-
cess was finished before continuing. The communication was one-way and only a
single “transaction” was completed.

It is also possible to start a child process using SPAWN and continue the PV-WAVE
process without waiting for the child process to finish. To do this, PV-WAVE
attaches a bidirectional pipe to the standard input and output of the child process.
This pipe appears in the PV-WAVE process as a normal logical file unit. Once a
process has been started in this way, the normal PV-WAVE Input/Output facilities
are used to communicate with it. The ability to use a child process in this manner
allows you to solve specialized problems using other languages, and to take advan-
tage of existing programs.

Starting the Child Process

In order to start such a process, the Unit keyword is used with SPAWN to specify
a named variable into which the logical file unit number will be stored. Once the
child process has done its work, the FREE_LUN procedure is used to close the pipe
and delete the process.

When using a child process in this manner, it is important to understand the follow-
ing points:

• The EOF function always returns false when applied to a pipe. This means that
it is not possible to use this function to know when the child process is finished.
As a result, the child process must be written in such a way that the controlling
PV-WAVE procedure knows how much data to send and how much is coming
back.

• A UNIX pipe is simply a buffer maintained by the operating system. It has a
fixed length, and can therefore become completely filled. When this happens,
the operating system puts the process that is filling the pipe to sleep until the
process at the other end consumes the buffered data. The use of a bidirectional
pipe can therefore lead to deadlock situations in which both processes are wait-

20 Application Developer’s Guide

ing for each other. This can happen if the parent and child processes do not
synchronize their reading and writing activities.

• Most C programs use the input/output facilities provided by the Standard C
Library stdio. In situations where PV-WAVE and the child process are car-
rying on a running dialog (as opposed to a single transaction), the normal
buffering performed by stdio on the output file can cause communications
to hang. We recommend calling the stdio function setbuf() as the first
statement of the child program to eliminate such buffering:

(void) setbuf(stdout, (char *) 0);

It is important that this statement occur before any output operation is exe-
cuted, otherwise it will have no effect.

Example: Communicating with a Child Process Using
SPAWN

This example assumes you have a C program, test_pipe.c, that accepts float-
ing point values from its standard input and returns their average on the standard
output. The code for such a C program is shown next. An explanation of the pro-
gram is given immediately after the listing.

You can find the following example file in:

$WAVE_DIR/demo/interapp/spawn/test_pipe.c

#include <stdio.h>

/* System error number */

extern int errno;

/* System error messages */

extern char *sys_errlist[];

/* Length of sys_errlist*/

extern int sys_nerr;

main()

{

float *data, total = 0.0;

long i, n;

/* Make sure the output is not buffered */

setbuf(stdout, (char *) 0);

/* Find out how many points */

if (!fread(&n, sizeof(long), 1, stdin)) goto error;

/* Get memory for the array */

if (!(data = (float *) malloc((unsigned)
(n * sizeof(float))))) goto error;

 21

/* Read the data */

if (!fread(data, sizeof(float), n, stdin)) goto error;

/* Calculate the average */

for (i=0; i < n; i++) total += data[i];

total /= (float) n;

/* Return the answer */

if (!fwrite(&total, sizeof(float), 1,
stdout)) goto error;

return;

error:
fprintf(stderr, "test_pipe: %s\n",
sys_errlist[errno]);

}

This C program returns a single-precision floating-point value, which is the aver-
age of the input values. The program also reads a long integer that tells how many
data points to expect.

Since the amount of input and output for this program is explicitly known, and
because it reads all of its input at the beginning and writes all of its results at the
end, a deadlock situation as described in the previous section cannot occur.

NOTE In actual practice, such a trivial program would never be used from PV-
WAVE; it is simpler and more efficient to perform the calculation within PV-
WAVE. It does, however, serve to illustrate the method by which significant pro-
grams can be called from PV-WAVE.

Using SPAWN to Access the C Program from PV-WAVE

The following PV-WAVE statements use test_pipe to determine the average of
the values 0 through 9:

SPAWN, ’test_pipe’, Unit=unit, /Noshell

; Start test_pipe. The use of the Noshell keyword is not necessary,
; but speeds up the startup process.

WRITEU, unit, 10L, FINDGEN(10)

; Send the number of points followed by the actual data.
answer = 0.0

READU, unit, answer

PRINT, "Average = ", answer

FREE_LUN, unit

; Close the pipe, delete the child process, and deallocate the LUN.

22 Application Developer’s Guide

Executing these statements gives the result:

Average = 4.50000

This mechanism provides a simple way to augment PV-WAVE with code written
in other languages such as C or FORTRAN. In this case, however, it is not as effi-
cient as writing the required operation entirely in PV-WAVE. The actual cost
depends primarily on the amount of data being transferred. For example, the above
example can be performed entirely in PV-WAVE using a simple statement like:

PRINT, ’Average = ’, TOTAL(FINDGEN(10))/10.0

The PV-WAVE calculation is always faster; however, the difference may only be
significant when a large amount of data is transferred.

Executing PV-WAVE Commands Externally

NOTE The commands described in this section are only available for PV-WAVE
running on UNIX systems.

NOTE The commands described in this section cannot be used with PV-WAVE in
runtime mode.

The routines waveinit, wavecmd, and waveterm let you execute PV-WAVE
from an external program, such as a C or FORTRAN program. The first routine,
waveinit, starts PV-WAVE. The second routine, wavecmd, sends commands to
PV-WAVE. The third routine, waveterm, ends the PV-WAVE session.

NOTE These routines allow one-way (unidirectional) communication only. That
is, PV-WAVE cannot pass data back to the calling program. If you require data to
be passed back to the calling program (bidirectional transfer), then choose another
method of interapplication communication.

Compiling the External Program

After these routines have been incorporated into an external program, the program
must be compiled with the correct object module. The object module is named
callwave.o, and its full pathname is the following, where arch is the machine
architecture, such as hps700 or sun4:

$WAVE_DIR/bin/bin.arch/callwave.o

 23

If you are unsure about the architecture, you can get the information by typing the
following command:

$WAVE_DIR/bin/arch

Once you know the architecture, you can compile your program. For example, if
you were on a Sun-4, you would type one of the following commands:

cc -o myprog myprog.c $WAVE_DIR/bin/bin.sun4/callwave.o

or

f77 -o myprog myprog.f $WAVE_DIR/bin/bin.sun4/callwave.o

NOTE Compile and link options will vary by platform, and are sometimes site
specific. Refer to the man page for your compiler for more detailed information on
how to compile programs on your system.

Starting PV-WAVE from an External Program with waveinit

The initialization routine waveinit starts PV-WAVE. The routine first checks the
environment variable WAVE_DIR. If WAVE_DIR is defined, the routine uses the
path $WAVE_DIR/bin/wave to start PV-WAVE. When WAVE_DIR is not
defined, the routine uses the path /usr/local/bin/wave. The last part of the
path (wave) may be set to a symbolic link. When this path (/usr/local/bin/
wave) is used, the path /usr/local/lib/wavemust also be a valid path. The
last part of this path may be set to a symbolic link that points to the main PV-WAVE
directory.

The waveinit function has one output parameter, the name of a file to contain
the PV-WAVE alphanumeric output (not the graphics output). For example, you
can specify a character string denoting the filename or you can specify a null string,
denoting that no alphanumeric output should be produced. Suppose you have a C
program and you do not want to save the output, you can use:

waveinit("");

To write the alphanumeric output to a file (e.g., wave.out), use the following:

waveinit("wave.out");

To do the same thing from a FORTRAN program, you would use the following two
commands:

CALL WAVEINIT(’’);

or

CALL WAVEINIT(’wave.out’);

24 Application Developer’s Guide

Sending Commands to PV-WAVE with wavecmd

To send commands to PV-WAVE, you must use the wavecmd routine. The rou-
tine’s single parameter is the string you want to send to PV-WAVE. For example,
to plot a vector [1,2,3,4,5] from a C program you would use:

wavecmd("plot, [1,2,3,4,5]");

From a FORTRAN program:

CALL WAVECMD(’PLOT, [1,2,3,4,5]’)

The wavecmd routine can be called as many times as required.

Ending the Session with PV-WAVE with waveterm

When you are finished sending commands to PV-WAVE, you must call the routine
waveterm. This routine ends the session with PV-WAVE and closes the necessary
files. In a C program, type:

waveterm();

and in a FORTRAN program type:

CALL WAVETERM();

Example: Calling PV-WAVE from a C Program

The following C code sample shows how to pass a 5-element array to PV-WAVE,
have PV-WAVE perform some calculations, and produce a surface plot.

You can find the following listed file in:

$WAVE_DIR/demo/interapp/wavecmd/example.c

#include <stdio.h>

#include <string.h>

#define MAXSIZE 128

main()

{

/*

* Variables for array passing

*/

char buf[MAXSIZE];

char temp[MAXSIZE];

/*

* Variables for calculations

*/

 25

int i,x[5];

/*

*Perform some calculations

*/

for (i=0; i< 5; i++) x[i] = i * 4;

/*

* Start PV-WAVE sending the alphanumeric

* output to ’wave.save’.

*/

waveinit("wave.save");

/*

* Send the commands to PV-WAVE. First, we

* need to send the array to PV-WAVE.

*/

sprintf(buf,"a=[%d", x[0]);

for (i=1; i< 5; i++) {
sprintf(temp,",%d", x[i]);
strcat(buf, temp);

}

strcat(buf, "]");

wavecmd(buf);

/*

* Next, we perform a matrix multiplication.

* Then we print the newly formed

* two-dimensional array, as well as display

* it as a surface.

*/

wavecmd("b = a # a");

wavecmd("print, b");

wavecmd("surface, b");

/*

* The following WAIT is needed so that the

 * surface will not be deleted as soon as it

* has been drawn.

*/

wavecmd("wait, 3.0");

/*

* Since we are done sending commands to

* PV-WAVE, we must call waveterm.

*/

waveterm();

26 Application Developer’s Guide

}

Example: Calling PV-WAVE from a FORTRAN Program

The following FORTRAN code fragment shows how you can use PV-WAVE to
manipulate and plot data.

You can find the following listed file in:

$WAVE_DIR/demo/interapp/wavecmd/examplefor.f

PROGRAM TEST

C

C Start PV-WAVE and send the alphanumeric

C output to ’wavefor.save’.

C

CALL WAVEINIT(’wavefor.save’)

C

C Send my commands to PV-WAVE. First, we

C define a 5-element array. Next, we perform

C a matrix multiplication. Then we print the

C newly formed two-dimensional array and

C display it as a surface.

C

CALL WAVECMD(’A =[110,90,27,48,60]’)

CALL WAVECMD(’B =A # A’)

CALL WAVECMD(’PRINT, B’)

CALL WAVECMD(’SURFACE, B’)

C The following WAIT is needed so that the

C surface will not be deleted as soon as it

C has been drawn.

C

CALL WAVECMD(’WAIT, 3.0’)

C

C Since we are done sending commands to

C PV-WAVE, we must call waveterm.

C

CALL WAVETERM()

END

 27

Using LINKNLOAD to Call External Programs
The LINKNLOAD function provides simplified access to external routines in
shareable images. LINKNLOAD calls a function in an external sharable object and
returns a scalar value. Parameters are passed through PV-WAVE to the specified
external function by reference, thus allowing the external function to alter values
of PV-WAVE variables. It is the simplest method for attaching your own C code to
PV-WAVE. Unlike SPAWN, LINKNLOAD allows the sharing of binary data
without duplication (transferal) overhead.

Usage

result = LINKNLOAD(object, symbol [, param1, ..., paramn])

Parameters

object — A string specifying the filename, including the file path
(use ./<filename> if the file is in the current directory), of the sharable object
file to be linked and loaded.

symbol — A string specifying the function name (symbol entry point) to be
invoked in the shared object file.

parami — The data to be passed as a parameter to the function.

For more detailed information on the LINKNLOAD parameters and optional
keywords see the discussion of LINKNLOAD in the PV-WAVE Reference.

Discussion

LINKNLOAD lets you call a C function (or a FORTRAN function) from PV-
WAVE almost as if you were calling a PV-WAVE function. The called function can
obtain information from PV-WAVE through passed parameters or by accessing PV-
WAVE’s variables directly (see Using wavevars() to Access PV-WAVE Variables on
page 50).

Any PV-WAVE data type can be passed as a parameter to a C or FORTRAN rou-
tine. By default, parameters are passed by reference (not by value), and thus it is up
to the programmer’s discretion whether or not the C or FORTRAN function alters
the parameter’s value. Use the Value keyword to pass parameters by value. Param-
eters are passed in the traditional C fashion of argc and argv. On OpenVMS only,
use the Vmscall keyword to pass parameters individually rather than with argc and

28 Application Developer’s Guide

argv. The C function must know the type to expect for each parameter and must
cast it to a C variable of the correct type.

For FORTRAN, since the parameters are passed as pointers, functions are provided
to access their values. These functions are:

• WLNL_GETBYTE

• WLNL_GETSHORT

• WLNL_GETLONG

• WLNL_GETFLOAT

• WLNL_GETDOUBLE

• WLNL_GETCOMPLEX

• WLNL_GETSTRING

• WLNL_GETBYTE_ARRAY

• WLNL_GETSHORT_ARRAY

• WLNL_GETLONG_ARRAY

• WLNL_GETFLOAT_ARRAY

• WLNL_GETDOUBLE_ARRAY

• WLNL_GETCOMPLEX_ARRAY

• WLNL_GETSTRING_ARRAY

For detailed information on these functions, see the file:

(UNIX) $WAVE_DIR/util/variables/README

(OpenVMS) WAVE_DIR:[UTIL.VARIABLES]README

NOTE Make sure the number, type, and dimension of the parameters passed to the
external function match what the external function expects (this can most easily be
done from within PV-WAVE before calling LINKNLOAD). Furthermore, the
length of string parameters must not be altered and multi-dimensional arrays are
flattened to one-dimensional arrays.

NOTE Because internal C longs are 8 bytes on Digital UNIX, passing longs from
FORTRAN applications requires an INTEGER*8 declaration. Note that with
LINKNLOAD, pointers are used to get the value of a variable. For example:

B = WLNL_GETBYTE(VAL(ARGP(1)))

 29

Here, the value of ARGP represents a pointer, which is the same size as a long inte-
ger. Thus, ARGP needs to be declared as an INTEGER*8 variable.

Accessing the Data in PV-WAVE Variables

Two methods exist for accessing the results generated by PV-WAVE in a user-writ-
ten application called with LINKNLOAD.

Method 1: wavevars

The first method uses wavevars, a C function that can be invoked from code
linked to PV-WAVE (either statically or dynamically) to obtain data from PV-
WAVE’s data variable space.

The wavevars calling sequence is:

result = wavevars(&argc, &argv, &argp);

For detailed information about wavevars, see Using wavevars() to Access
PV-WAVE Variables on page 50.

The wavevars function can only be used from a C function. It cannot be used
from a FORTRAN function; however, a FORTRAN function could be used in con-
junction with a C wrapper to accomplish the same task. See Example 4 on page 35
for information on this technique.

Method 2: The Option Programming Interface

The second method involves using the Option Programming Interface (OPI), a C-
callable or FORTRAN-callable programming interface that was developed to pro-
vide greater flexibility and control than wavevars. OPI differs from wavevars
in the following ways:

• Uses less memory than wavevars

• Can obtain information about a single PV-WAVE variable at a time.

• Can obtain a subset of the information normally returned by wavevars.

For detailed information on OPI, see the PV-WAVE Programmer’s Guide.

NOTE To use OPI effectively with C programs, you should be a C programmer,
understand the difference between call-by-reference and call-by-value, and be able
to use pointers and the C malloc() function. To use OPI with FORTRAN callable
libraries, you should be a FORTRAN programmer, understand the difference

30 Application Developer’s Guide

between call-by-reference and call-by-value, and know how to use the LOC and
VAL functions. To use either the C or FORTRAN OPI library, you must know how
to use the LINKNLOAD function.

Example 1: Calling a C Program

In this example, parameters are passed to the C external function using the conven-
tional (argc, argv) UNIX strategy. argc indicates the number of data pointers which
are passed from PV-WAVE within the array of pointers called argv. The pointers in
argv can be cast to the desired type as the following program demonstrates.

You can find the following listed file in:

$WAVE_DIR/demo/interapp/linknload/example.c

#include <stdio.h>

#include "wavevars.h"

long WaveParams(argc,argv)

int argc;

char *argv[];

{

char *b;

short *s;

long *l;

float *f;

double *d;

complex *c;

char **str;

if (argc != 7) {

fprintf(stderr,”wrong # of parameters\n”);

return(0);

}

b = ((char **)argv)[0];

 s = ((short **)argv)[1];

 l = ((long **)argv)[2];

 f = ((float **)argv)[3];

 d = ((double **)argv)[4];

 c = ((complex **)argv)[5];

 str = ((char ***)argv)[6];

 fprintf(stderr,”%d %d %ld %g %g <%g%gi> ’%s’\n”, (int)
b[0],(int)s[0],(long)l[0], f[0],d[0],c[0].r,c[0].i,str[0]);

 31

 return(12345);

}

Compiling the Example C Routine

The commands for compiling the example C routine to produce a shareable object
on different platforms are listed in the files:

$VNI_DIR/wave/demo/interapp/linknload/build.* (UNIX)

VNI_DIR:[WAVE.DEMO.INTERAPP.LINKNLOAD]BUILD.* (OpenVMS)

Please refer to the appropriate operating system documentation for more informa-
tion on these commands.

NOTE Under AIX 3.2, the symbol entry point must be specified when the external
sharable object is built, by using the “-e” flag, and thus the function symbol
parameter to LINKNLOAD has no effect under AIX.

Accessing the External Function with LINKNLOAD

The following PV-WAVE code demonstrates how the C function defined in this
example could be invoked.

ln = LINKNLOAD(’example_so’,’WaveParams’, $
byte(1),2,long(3), float(4),double(5), $
complex(6,7),’eight’)

The resulting output is:

1 2 3 4 5 <6,7i> ’eight’

Using the INFO command, you can see that LINKNLOAD returns the scalar value
1.

INFO, ln
LN LONG = 1

The example program works with both scalars and arrays since the actual C pro-
gram above only looks at the first element in the array and since PV-WAVE
collapses multi-dimensional arrays to one-dimensional arrays:

ln = LINKNLOAD(’example_so’,’WaveParams’, $
[byte(1)],[[2,3],[4,5]], [long(3)], $
[float(4)],[double(5)],[complex(6,7)], [’eight’])

The resulting output is:

 1 2 3 4 5 <6,7i> ’eight’

32 Application Developer’s Guide

Example 2: Calling a FORTRAN Program

In this example, parameters are passed from PV-WAVE to the FORTRAN external
function. Variables from PV-WAVE are passed as pointers to the FORTRAN func-
tion. In the FORTRAN function, thewlnl_get* functions are used to retrieve the
values of the variables. See Discussion on page 27 for more information on these
functions.

You can find the following listed file in:

$WAVE_DIR/demo/interapp/linknload/examplefor.f

INTEGER*4 FUNCTION WAVEPARAMS(ARGC,ARGP)

 INTEGER*4 ARGC, ARGP(*)

BYTE B

INTEGER*2 S

INTEGER*4 L

REAL*4 F

DOUBLE PRECISION D

STRUCTURE /CMPLX/

 REAL R,I

END STRUCTURE

RECORD /CMPLX/ C

INTEGER*4 RET

CHARACTER*80 STR

INTEGER*4 NCHAR

INTEGER*4 WLNL_GETLONG

INTEGER*4 WLNL_GETSTRING

INTEGER*4 WLNL_GETCOMPLEX

INTEGER*2 WLNL_GETSHORT

BYTE WLNL_GETBYTE

REAL WLNL_GETFLOAT

DOUBLE PRECISION WLNL_GETDOUBLE

IF (LOC(ARGC) .NE. 7) THEN

 33

PRINT *,’Wrong # of parameters’,LOC(ARGC)

WAVEPARAMS = 0

RETURN

ENDIF

B = WLNL_GETBYTE(%VAL(ARGP(1)))

S = WLNL_GETSHORT(%VAL(ARGP(2)))

L = WLNL_GETLONG(%VAL(ARGP(3)))

F = WLNL_GETFLOAT(%VAL(ARGP(4)))

D = WLNL_GETDOUBLE(%VAL(ARGP(5)))

RET = WLNL_GETCOMPLEX(%VAL(ARGP(6)),C.R,C.I)

NCHAR = WLNL_GETSTRING(%VAL(ARGP(7)),STR, 80)

PRINT 100,B,S,L,F

100 FORMAT(’ BYTE=’,I3,’,SHORT=’,I6,’,LONG=’,I8,’,REAL=’,F10.5)

PRINT 200,D,C.R,C.I

200 FORMAT(’ DOUBLE=’,D15.5,’,COMPLEX=[’,F10.5,’,’,F10.5,’]’)

PRINT *,’STRING=’,STR,’,NCHAR=’,NCHAR

WAVEPARAMS = 1

RETURN

END

Compiling the Example FORTRAN Routine

The commands for compiling the example FORTRAN routine to produce a share-
able object on different platforms are listed in the files:

(UNIX) $VNI_DIR/wave/demo/interapp/linknload/build.*

(OpenVMS) VNI_DIR:[WAVE.DEMO.INTERAPP.LINKNLOAD]BUILD.*

Please refer to the appropriate operating system documentation for more informa-
tion on these commands.

Under SunOS and Solaris the setting of LD_LIBRARY_PATH may vary depend-
ing on how your operating system was installed. If necessary, see your system
administrator to determine the correct directory.

34 Application Developer’s Guide

Accessing the External Function with LINKNLOAD

The following PV-WAVE code demonstrates how the FORTRAN function defined
in this example could be invoked.

ln = LINKNLOAD(’examplefor_so’,’waveparams’, $
byte(1),2,long(3), float(4),double(5), complex(6,7),’eight’)

The resulting output is:

1 2 3 4 5 <6,7i> ’eight’

Using the INFO command, you can see that LINKNLOAD returns the scalar value
12345 as expected.

INFO, ln
LN LONG = 12345

The example program works with both scalars and arrays since the actual FOR-
TRAN program above only looks at the first element in the array and since PV-
WAVE collapses multi-dimensional arrays to one-dimensional arrays:

ln = LINKNLOAD(’examplefor_so’,’waveparams’, $
[byte(1)],[[2,3],[4,5]], [long(3)], $
[float(4)],[double(5)],[complex(6,7)], [’eight’])

The resulting output is:

 1 2 3 4 5 <6,7i> ’eight’

Example 3

In this example, the PV-WAVE program calls the C function (via LINKNLOAD),
passing it parameters. The C function modifies these parameters and also accesses
PV-WAVE’s variable data space directly. The C function then returns control to PV-
WAVE, passing to PV-WAVE the result of the function.

This example contains two programs:

• wave_to_c_main.pro — A PV-WAVE main program that uses LINKN-
LOAD to call a C function. The PV-WAVE program passes parameters to the
C function, which modifies the parameters’ values. When control is returned
to PV-WAVE, the values of the PV-WAVE variables which were passed as
parameters are changed.

• c_from_wave.c — The C function to be called by PV-WAVE via
LINKNLOAD.

On a UNIX system, the C and PV-WAVE code described in this example is avail-
able online in the directory:

 35

$WAVE_DIR/demo/interapp/linknload

On an OpenVMS system, the C and PV-WAVE code described in this example is
available online in the directory:

WAVE_DIR:[DEMO.INTERAPP.LINKNLOAD]

The C function must be compiled as a shareable object, as explained below. It is
because the C function is linked shareable and shares the same data space with PV-
WAVE that the C function can access PV-WAVE variables directly.

Compiling the Example C Routine

The commands for compiling the example C routine to produce a shareable object
on different platforms are listed in the files:

(UNIX) $VNI_DIR/wave/demo/interapp/linknload/build.*

(OpenVMS) VNI_DIR:[WAVE.DEMO.INTERAPP.LINKNLOAD]BUILD.*

Please refer to the appropriate operating system documentation for more informa-
tion on these commands.

Running the Example Program

Enter PV-WAVE and type the following at the WAVE> prompt:

.RUN wave_to_c_main

Under Solaris, you need to do set the LD_LIBRARY_PATH environment variable
to the directory containing the file c_from_wave.so. You must set this variable
even if that file is in the current working directory. For example:

solaris% setenv LD_LIBRARY_PATH .

Example 4

In this example, the PV-WAVE program calls a C wrapper function, passing it PV-
WAVE variables as parameters. The C wrapper calls the FORTRAN function, pass-
ing along the same parameters. The FORTRAN function modifies the values of the
PV-WAVE variables it receives as parameters. The FORTRAN function then
returns control to PV-WAVE, passing to PV-WAVE the result of the function. The
new values, assigned to the PV-WAVE variables by the FORTRAN program, are
accessible within PV-WAVE upon return from the FORTRAN program.

This example contains three programs:

• wave_to_fort_main.pro — A PV-WAVE main program that uses
LINKNLOAD to call a FORTRAN function. The PV-WAVE program passes

36 Application Developer’s Guide

parameters to a C wrapper, which in turn calls the desired FORTRAN function
to modify the PV-WAVE parameters. When control is returned to PV-WAVE,
the values of the PV-WAVE variables which were passed as parameters are
changed.

• wave_to_fort_w.c — A C function that is called by PV-WAVE, via
LINKNLOAD. This routine is a C wrapper that allows a PV-WAVE program
to pass parameters to and invoke a FORTRAN function. The FORTRAN func-
tion can modify the values of the PV-WAVE variables passed as parameters and
the modified values will be accurately reflected upon return to PV-WAVE.

• fort_from_wave.f — The FORTRAN function to be called by the C
wrapper.

On a UNIX system, the C and PV-WAVE code described in this example is avail-
able online in the directory:

$WAVE_DIR/demo/interapp/linknload

On an OpenVMS system, the C and PV-WAVE code described in this example is
available online in the directory:

WAVE_DIR:[DEMO.INTERAPP.LINKNLOAD]

Compiling and Linking the Programs

The commands for compiling the example C wrapper function
wave_to_fort_w and the FORTRAN function fort_from_wave.f to pro-
duce a shareable object on different platforms are listed in the files:

(UNIX) $VNI_DIR/wave/demo/interapp/linknload/build.*

(OpenVMS) VNI_DIR:[WAVE.DEMO.INTERAPP.LINKNLOAD]BUILD.*

Please refer to the appropriate operating system documentation for more informa-
tion on these commands.

Under SunOS the setting of LD_LIBRARY_PATH may vary depending on how
your operating system was installed. If necessary, see your system administrator to
determine the correct directory.

Running the Example Program

Enter PV-WAVE and type the following at the WAVE> prompt:

.RUN wave_to_fort_main

Under Solaris, you need to set the LD_LIBRARY_PATH environment variable to
the directory containing the file wave_to_fort.so. You must set this variable
even if that file is in the current working directory.

 37

Calling PV-WAVE in a Statically Linked Program
Under OpenVMS or UNIX, an application written in C or FORTRAN can be
linked directly (statically) with the PV-WAVE object libraries. The user application
then passes PV-WAVE commands to the entry points cwavec (C application) or
cwavefor (FORTRAN application) in the PV-WAVE shareable image.

cwavec: Calling PV-WAVE from a C Program

The routine cwavec, discussed in detail in this section, is the C application entry
point to a PV-WAVE shareable image.

Usage

istat = cwavec(action, numcmds, cmds)

Parameters

action — Specifies how you wish PV-WAVE to execute. It can have one of the fol-
lowing values:

• action=1 — Run normally. You are interactively prompted for input and exe-
cution continues until you enter the end-of-file character or issue the EXIT
command. At this point, cwavec returns with a value of 1. Once cwavec has
been called in this mode, it should not be called again.

• action=2 — Execute the commands supplied by cmds array and return. The
return value is the value of the !Error system variable. The cwavec routine
can be called repeatedly in this mode.

• action=3 — It is necessary to wrap up the session by calling cwavec one last
time with action=3. This performs any housekeeping required by PV-
WAVE such as closing any open files. The return value for this mode is 1. Once
cwavec has been called in this mode, it should not be called again.

numcmds — The number of elements supplied in cmds. This argument is ignored
if action=3 or if action=1.

cmds — An array of pointers to strings. If action=2, cmds provides an array of
PV-WAVE commands to execute. This argument is ignored if action=3 or if
action=l.

Returned Value

istat — The returned value depends on the action selected, as explained previously.

38 Application Developer’s Guide

Discussion

You can choose to communicate with PV-WAVE in either an interactive mode or
by sending an array of commands. Both of these methods automatically initialize
PV-WAVE.

The first parameter is the action parameter. The action parameter may have one of
the following the values:

The third parameter is the name of an array of pointers to strings (i.e., char**)
containing the PV-WAVE commands to be executed. The second parameter speci-
fies the number of elements supplied in the third parameter. The second and third
parameters are ignored if the value of the action parameter is 1 or 3.

The status value returned by cwavec depends on the value of the action parameter
and in some cases on the value of the action performed. If the value of the action
parameter is 1 or 3, cwavec will return 1 as the status. If the value of the action
parameter is 2,cwavecwill return the value of the PV-WAVE system variable !Err
as the status.

Accessing the Data in PV-WAVE Variables

To access data in PV-WAVE variables, use the wavevars function, a C function
that can be invoked from code linked to PV-WAVE (either statically or
dynamically).

The wavevars calling sequence is:

result = wavevars(&argc, &argv, &argp);

For detailed information about wavevars, see Using wavevars() to Access
PV-WAVE Variables on page 50.

Value Meaning

1 Run PV-WAVE interactively.

2 Execute a sequence of PV-WAVE commands and return to the C
program.

3 Exit PV-WAVE and return to the C program.

 39

Ending the Session with PV-WAVE

If you are in interactive mode (action=1), enter EXIT at the WAVE> prompt to
return to your C application. There is no need to call cwavecwith action=3 to
end the session. However, if the application has accessed PV-WAVE in non-inter-
active mode (action=2), the session must be terminated by a final call to
cwavec with action=3.

Running PV-WAVE from a C Program

To run PV-WAVE from a C program you must first link the C program with PV-
WAVE. The C program may then invoke PV-WAVE via the entry point cwavec in
the PV-WAVE shareable object. The C program must pass three parameters to the
cwavec entry point. For details on linking the application to PV-WAVE, see How
to Link Applications to PV-WAVE on page 47.

Example 1

In non-interactive mode, valid PV-WAVE commands are passed to cwavec as an
array of strings. For example, to plot the vector [1, 2, 3, 4, 5] from a C application
statically linked to PV-WAVE, the commands would be:

char *cmds[5];

.

.

.

cmds[0] = "a = indgen(5) + 1";

cmds[1] = "plot, a";

action=2;

status = cwavec(action, 2, cmds);

Example 2

This example shows how to pass a five-element array to PV-WAVE via cwavec,
have PV-WAVE perform some calculations, and produce a plot.

You can find the following listed file in:

$WAVE_DIR/demo/interapp/cwave/example.c

#include <stdio.h>

main()

{

/* Variables for array calculations

*/

40 Application Developer’s Guide

int action, numcmds, istat, cwavec();

char *cmds[5];

/*

* Access PV-WAVE in non-interactive mode

*/

action=2;

numcmds=5;

/*

* Send the array of commands to PV-WAVE

* Define the array A

* Perform matrix multiplication

* Print contents of B

* Display B as a surface

* Issue a wait command so you can view result

* Call cwavec

*/

cmds[0] = "A = INDGEN(5) * 4";

cmds[1] = "B = A # A";

cmds[2] = "PRINT, B";

cmds[3] = "SURFACE, B";

cmds[4] = "WAIT, 3.0";

istat = cwavec(action, numcmds, cmds);

/*

* Since we are done sending commands to

* PV-WAVE, make a final call to cwavec

* with action=3 to wrap up the session

*/

action=3;

istat = cwavec(action, 0, cmds);

}

Compiling and Linking the Example Program

You can use the following commands to compile the example program and link it
to PV-WAVE on a UNIX system:

setenv arch ‘$WAVE_DIR/bin/arch‘

cc -c example.c

make -f $WAVE_DIR/src/pub/quick.mk \
link MAIN=example OBJ=example.o \
TARGARCH=$arch

 41

For more information on compiling programs and linking them using the makefile
quick.mk, see How to Link Applications to PV-WAVE on page 47.

Example 3

In this example the C program passes commands to PV-WAVE to be executed and
then accesses the results directly from PV-WAVE’s variable data space via the
wavevars routine.

This example uses one program:

• wave_from_c.c — The C function that calls PV-WAVE and accesses PV-
WAVE variables directly.

On a UNIX system, this program is available online in the directory:

$WAVE_DIR/demo/interapp/cwave

On an OpenVMS system, this program is available online in the directory:

WAVE_DIR:[DEMO.INTERAPP.CWAVE]

The C program must be compiled and linked with PV-WAVE to produce a single
executable program, as explained in the next section. It is because your program is
linked with PV-WAVE as a single executable that your program can “share” PV-
WAVE variables.

Compiling and Linking the Example Program

You can use the following commands to compile the example program and link it
to PV-WAVE on a UNIX system:

setenv arch ‘$WAVE_DIR/bin/arch‘

cc -c wave_from_c.c

make -f $WAVE_DIR/src/pub/quick.mk \
link MAIN=wave_from_c OBJ=wave_from_c.o \
TARGARCH=$arch

For more information on compiling programs and linking them using the makefile
quick.mk, see How to Link Applications to PV-WAVE on page 47.

NOTE The link operation for this example creates a large executable, because it
links in all of PV-WAVE.

42 Application Developer’s Guide

Running the Program

After the program is compiled and linked, it can be run by entering the name of the
resulting executable file. For example, if the executable is called wave_from_c,
enter:

wave_from_c

The output from this example is shown in Figure 2-1.

Figure 2-1 The first graphic produced by this example is shown on the left. The second
graphic produced is on the right.

cwavefor: Calling PV-WAVE from a FORTRAN Program

The cwavefor routine is the FORTRAN application entry point to a PV-WAVE
shareable image.

Usage

istat = cwavefor(action, numcmds, cmds, cmdlen)

Parameters

action — Specifies how you wish PV-WAVE to execute. It can have one of the fol-
lowing values:

• action=1 — Run normally. You are interactively prompted for input and exe-
cution continues until you enter the end-of-file character or issue the EXIT
command. At this point, cwavefor returns with a value of 1. Once
cwavefor has been called in this mode, it should not be called again.

 43

• action=2 — Execute the commands supplied by cmds array and return. The
return value is the value of the !Error system variable. The cwavefor routine
can be called repeatedly in this mode.

• action=3 — It is necessary to wrap up the session by calling cwavefor one
last time with action=3. This performs any housekeeping required by PV-
WAVE such as closing any open files. The return value for this mode is 1. Once
cwavefor has been called in this mode, it should not be called again.

numcmds — The number of elements supplied in cmds. This argument is ignored
if action=3 or if action=1.

cmds — An array of strings. If action=2, cmds provides an array of PV-WAVE
commands to execute. This argument is ignored if action=3 or if action=l.

cmdlen — The declared length of each string element in the two-dimensional
array.

Returned Value

istat — The returned value depends on the action selected, as explained previously.

Discussion

You can choose to communicate with PV-WAVE in either an interactive mode or
by sending an array of commands. These methods automatically initialize PV-
WAVE.

The first parameter is the action parameter. The action parameter may have one of
the following the values:

The third parameter is the name of an array of strings containing the PV-WAVE
commands to be executed. The second parameter specifies the number of elements
supplied in the third parameter. The second and third parameters are ignored if the
value of the action parameter is 1 or 3.

The status value returned by cwavefor depends on the value of the action param-
eter and in some cases on the value of the action performed. If the value of the

Value Meaning

1 Run PV-WAVE interactively.

2 Execute a sequence of PV-WAVE commands and return to the
FORTRAN program.

3 Exit PV-WAVE and return to the FORTRAN program.

44 Application Developer’s Guide

action parameter is 1 or 3, cwavefor will return 1 as the status. If the value of
the action parameter is 2, cwavefor will return the value of the PV-WAVE sys-
tem variable !Error as the status.

Ending the Session with PV-WAVE

If you are in interactive mode (action=1), enter EXIT at the WAVE> prompt to
return to your FORTRAN application. There is no need to call cwavefor with
action=3 to end the session. However, if the application has accessed PV-WAVE
in non-interactive mode (action=2), the session must be terminated by a final
call to cwavefor with action=3.

Running PV-WAVE from a FORTRAN Program

To run PV-WAVE from a FORTRAN program you must first link the FORTRAN
program with PV-WAVE. The FORTRAN program can then invoke PV-WAVE via
the entry point cwavefor in the PV-WAVE shareable object. The FORTRAN
program must pass four parameters to the cwavefor entry point. For details on
linking the application to PV-WAVE, see How to Link Applications to PV-WAVE on
page 47.

Example 1

In non-interactive mode, valid PV-WAVE commands are passed to cwavefor as
an array of strings. For example, to plot the vector [1, 2, 3, 4, 5] from a FORTRAN
application statically linked to PV-WAVE, the commands would be:

character *50 cmds(5)

.

.

.

cmds(1) = ’a = INDGEN(5) + 1’

cmds(2) = ’plot, a’

action=2

call cwavefor(action, 2, cmds, 50)

Example 2

This example shows how to pass a five-element array to PV-WAVE via
cwavefor, have PV-WAVE perform some calculations, and produce a plot. You
can find the following listed file in:

$WAVE_DIR/demo/interapp/cwave/examplefor.f

PROGRAM EXAMPLE_175

 45

C

C Variables for array calculations

C

integer*4 action, numcmds, istat, cwavefor

character *30 cmds(5)

C

C In order to initialize stdin and stdout

C correctly so that output goes to your

C terminal, make the following call:

C This call for OpenVMS only.

call vaxc$crtl_init

C

C Access PV-WAVE in non-interactive mode

C

action=2

numcmds = 5

C

C Send the array of commands to PV-WAVE

C Define the array A

C Perform matrix multiplication

C Print contents of B

C Display B as a surface

C Issue a wait command so user can view result

C Call cwavefor

C

cmds(1) = ’A = INDGEN(5) *4’

cmds(2) = ’B = A # A’

cmds(3) = ’PRINT, B’

cmds(4) = ’SURFACE, B’

cmds(5) = ’WAIT, 3.0’

istat = cwavefor(action, numcmds, cmds, 30)

C

C Since we are done sending commands to

C PV-WAVE, make a final call to cwavec

C with action=3 to wrap up the session.

C

action=3

istat = cwavefor(action, 0, cmds, 30)

stop

end

46 Application Developer’s Guide

Compiling and Linking the Example Program

You can use the following commands to compile the example program and link it
to PV-WAVE on a UNIX system:

setenv arch ‘$WAVE_DIR/bin/arch‘

f77 -c examplefor.f

make -f $WAVE_DIR/src/pub/quick.mk \
flink MAIN=examplefor OBJ=examplefor.o \
TARGARCH=$arch

For more information on compiling programs and linking them using the makefile
quick.mk, see How to Link Applications to PV-WAVE on page 47.

Example 3

In this example, the FORTRAN program passes commands to PV-WAVE to be exe-
cuted and then accesses the results directly (via a C wrapper) from PV-WAVE’s
variable data space using the C function wavevars.

This example uses two functions:

• wave_from_fort.f — The FORTRAN function that calls PV-WAVE and
accesses PV-WAVE variables directly.

• wavevars_fl.c— A C function (wrapper) that allows the FORTRAN pro-
gram to retrieve and/or modify the values of floating-point arrays in PV-
WAVE’s variable data space. This is accomplished via the wavevars func-
tion, which interacts directly with PV-WAVE’s variable data space. (Direct
interaction between a FORTRAN program and wavevars does not work
because FORTRAN lacks the C language’s ability to access a common data
area by address.)

On a UNIX system, the C and FORTRAN code described in this example is avail-
able online in the directory:

$WAVE_DIR/demo/interapp/cwave

On an OpenVMS system, the C and FORTRAN code described in this example is
available online in the directory:

WAVE_DIR:[DEMO.INTERAPP.CWAVE]

The FORTRAN program must be compiled and linked with PV-WAVE and the C
wrapper routine to produce a single executable program, as explained in the next
section. It is because your program is linked with PV-WAVE as a single executable
that your program can “share” PV-WAVE variables.

 47

Compiling and Linking the Example Program

You can use the following commands to compile the example program and link it
to PV-WAVE on a UNIX system:

setenv arch ‘$WAVE_DIR/bin/arch‘

f77 -c wave_from_fort.f

cc -c wavevars_fl.c

make -f $WAVE_DIR/src/pub/quick.mk \
flink MAIN=wave_from_fort \
OBJ="wave_from_fort.o wavevars_fl.o" \
TARGARCH=$arch

For more information on compiling programs and linking them using the makefile
quick.mk, see How to Link Applications to PV-WAVE on page 47.

NOTE The link operation for this example creates a large executable, because it
links in all of PV-WAVE.

Running the Program

After the program is compiled and linked, it can be run by entering the name of the
resulting executable file. For example if the executable is called
wave_from_fort, enter:

wave_from_fort

The output from this example is shown in Figure 2-1 on page 42.

How to Link Applications to PV-WAVE

This section explains how to link C and FORTRAN applications to PV-WAVE on
a UNIX workstation and how to link C applications to PV-WAVE under
OpenVMS.

NOTE To relink PV-WAVE on Solaris systems, you must use the SPARCworks C
compiler. PV-WAVE references a number of routines in the SPARCworks math
library that are not available on other compilers. Visual Numerics will consider
providing support for other compilers if there is sufficient demand. Please contact
Visual Numerics Technical Support to request support for a different compiler.

48 Application Developer’s Guide

Using the quick.mk Makefile on a UNIX System

The makefile quick.mk is provided to assist you in linking compiled C and FOR-
TRAN programs to PV-WAVE.

NOTE On some systems, before invoking the makefile quick.mk with the
wave, link, or flink targets, you may need to run ranlib on the PV-WAVE
archives using the ranlib target supplied in quick.mk.

On a UNIX system, this makefile is located in:

$WAVE_DIR/src/pub/quick.mk

For example, to link a compiled program called mywavec to PV-WAVE, you can
use the following commands:

host> setenv arch ‘$WAVE_DIR/bin/arch‘

host> make -f $WAVE_DIR/src/pub/quick.mk \
link MAIN=mycwavec OBJ=mycwavec.o \
TARGARCH=$arch

Note the backquotes must be entered exactly as shown.

quick.mk can be modified as desired to build a single PV-WAVE application or
multiple applications. Refer to $WAVE_DIR/src/pub/README for more
details.

Linking a C Application to PV-WAVE: UNIX

The following statements illustrate how to link an application written
in C to PV-WAVE on a Sun-4 (UNIX) system. Note that the quotes and backquotes
must be entered exactly as shown.

NOTE The following commands are shown only as an example. It is possible that
these link commands differ from the commands required to link an application
under the current release of PV-WAVE. It is recommended that you use the make-
file quick.mk, described in the previous section, to link applications to PV-
WAVE.

setenv arch ‘$WAVE_DIR/bin/arch‘

setenv BINARCH $WAVE_DIR/bin/bin.$arch

setenv ARCHLIB \
’-Bstatic -lX11 -Bdynamic -ltermcap -lm -ldl $
-ltermcap -lm’

 49

cc -o mycwavec mycwavec.o \
$BINARCH/wave.$arch.a \
$VNI_DIR/cmathstat/bin/bin.$arch/cmast.$arch.a \
$VNI_DIR/dblink/bin/bin.$arch/dbms.$arch.a \
$BINARCH/dc.$arch.a \
$BINARCH/nr.$arch.a \
$BINARCH/render.$arch.a \
$BINARCH/rpc.$arch.a \
$BINARCH/table.$arch.a \
$BINARCH/wt.$arch.a \
$BINARCH/optionstubs.$arch.a \
$BINARCH/wave.$arch.a \
$ARCHLIB

NOTE Link options as represented by ARCHLIB will vary by platform and are
sometimes site specific. Refer to the macro LIBARCH in the files $WAVE_DIR/
src/*.mkcfg (sun4.mkcfg, hps700.mkcfg, etc.) for suggested values of
ARCHLIB.

Linking a FORTRAN Application: UNIX

The following statements illustrate how to link an application written in
FORTRAN to PV-WAVE on a Sun-4 (UNIX) system. The backquotes must be
entered exactly as shown.

The following commands are shown only as an example. It is possible that these
link commands differ from the commands required to link an application under the
current release of PV-WAVE. It is recommended that you use the makefile
quick.mk, described in the previous section, to link applications to PV-WAVE.
setenv arch ‘$WAVE_DIR/bin/arch‘

setenv BINARCH $WAVE_DIR/bin/bin.$arch

setenv ARCHLIB \
’-Bstatic -lX11 -Bdynamic -ltermcap -lm -ldl $
-lter mcap -lm’

f77 -Bstatic -o mycwavefor mycwavefor.o \
$BINARCH/wave.$arch.a \
$VNI_DIR/cmathstat/bin/bin.$arch/cmast.$arch.a \
$VNI_DIR/dblink/bin/bin.$arch/dbms.$arch.a \
$BINARCH/dc.$arch.a \
$BINARCH/nr.$arch.a \
$BINARCH/render.$arch.a \
$BINARCH/rpc.$arch.a \
$BINARCH/table.$arch.a \
$BINARCH/wt.$arch.a \
$BINARCH/optionstubs.$arch.a \
$BINARCH/wave.$arch.a \
$ARCHLIB

50 Application Developer’s Guide

Linking a C Application: OpenVMS

The following DCL procedure illustrates how to link an application
written in C to PV-WAVE on an OpenVMS system:
$! CLINK.COM --- link a C program with

$! PV-WAVE using the X driver

$!

$ cc my_c_app.c

$ define wave_image wave_dir:[bin]wave_x.exe

$ link my_c_app, sys$input/option/share

wave_image/shareable

$!

Refer to the file: WAVE_DIR:[SRC.PUB]README.VVMS for more information
on linking programs with PV-WAVE on an OpenVMS system.

Using wavevars() to Access PV-WAVE Variables
You can access PV-WAVE variables from a C program by calling the function
wavevars. Once commands have been sent to PV-WAVE from an external appli-
cation, you can use the wavevars function to access the results in the external
application. wavevars is a C function that can be invoked from code linked to
PV-WAVE either:

• statically via cwavec, or

• dynamically via LINKNLOAD.

NOTE Direct interaction between a FORTRAN program and wavevars is not
possible because FORTRAN lacks C’s ability to access a common data area by
address. Thus, to access PV-WAVE variables from a FORTRAN program, a C
wrapper must be written that calls wavevars.

wavevars obtains data directly from PV-WAVE’s variable data space.

NOTE See also the section Method 2: The Option Programming Interface on page
29. The Option Programming Interface (OPI) functions allow user-written code to
access PV-WAVE variables and use other PV-WAVE functionality. OPI provides
greater flexibility and control than wavevars.

 51

Usage

int argc;

char **argv;

WaveVariable *argp;

result = wavevars(&argc, &argv, &argp);

Parameters

argc — Set to the number of variables returned.

argv — Set to be an array of strings, sorted in lexicographic order, corresponding
to variable names available at the current scope level of PV-WAVE.

argp — A type WaveVariable array of descriptors defining the type, structure, and
dimension of the variables as well as providing a pointer to their actual data. The
WaveVariable structure is described in the Discussion section that follows.

Returned Value

result — A C int value which is nonzero if the routine executed successfully, and
zero if an error (such as running out of memory) occurred.

Discussion

PV-WAVE variables can be accessed directly from a C function by calling the C
function wavevars which is linked into PV-WAVE. The C function passes three
parameters to the wavevars entry point.

The first parameter is the address of an integer variable into which wavevarswill
return the number of currently-defined PV-WAVE variables (including system
variables).

The second parameter is the address of an array of pointers to strings (i.e.,
char**) into which wavevars will return the names of currently-defined PV-
WAVE variables.

The third parameter is the address of an array of pointers to the C structure Wave-
Variable into which wavevars will return information regarding the type,
structure, dimension, and data of each PV-WAVE variable (including a pointer to
the current value of the variable).

WaveVariable is defined as follows in $WAVE_DIR/util/variables/
wavevars.h. This header file must be included in any C function that calls
wavevars.

52 Application Developer’s Guide

typedef struct WaveVariable {

int type;

int read_only;

int numdims;

int dims[8];

int numelems;

int *data;

char name[MAXIDLEN + 1];

} WaveVariable;

CAUTION Although wavevars returns pointers to the data associated with PV-
WAVE’s variables, keep in mind that the data pointer associated with a given vari-
able can change after execution of certain PV-WAVE system commands. It’s best
to call wavevars immediately before it is needed to obtain information from the
external program.

The wavevars function allocates space to store the information it returns to the
caller. When the caller no longer needs the information returned by wavevars,
then the free_wavevars() function should be called to free the space. The
arguments to free_wavevars() should be identical to those used in the call to
wavevars such as:

result = free_wavevars(&argc, &argv, &argp);

and argc must still contain the number of variables returned by the wavevars
call.

The WaveVariable structure’s fields are:

int type — The type field indicates the type of the variable. Valid PV-WAVE
variable types, together with their C equivalents, are defined in wavevars.h as
follows:

TYP_BYTE char;

TYP_INT short;

TYP_LONG long;

TYP_FLOAT float;

TYP_DOUBLE double;

TYP_COMPLEX struct { float r, i; } COMPLEX;

TYP_STRING char *;

In PV-WAVE, a structure is a collection of data where each field (tag) has a name.
The C structure WaveVariable describes a PV-WAVE structure with a type of
TYP_STRUCT, where each element of the structure is contained in a list of

 53

WaveVariable structures pointed to by the data field, which is described later
in this section.

The constant TYP_ARRAY will be bitwise or-ed into the type field if the variable
is in fact an array.

int read_only — Many PV-WAVE variables are read-only, and thus if this
field is nonzero, it is not permissible to alter the actual variable data. This is often
the case with system variables.

int numdims — PV-WAVE variables may be of dimension zero (scalar) to
eight. The field numdims indicates the dimensionality of the variable.

int dims[8]— Indicates the size of each dimension of a variable if it is of type
array.

int numelems — Corresponds to the total number of data values which are
addressable from the data pointer.

int *data— Corresponds to the address of the actual variable data. The data is
always stored as a one-dimensional C array regardless of the dimensionality of the
PV-WAVE variable.

char name[MAXIDLEN + 1]— Only used when the variable being described
is of type structure and represents the structure or tag field name (depending on
context).

To access a specific PV-WAVE variable you must search the array of variable
names returned by wavevars to find the index associated with that variable. Then
use the index to access the correct PV-WAVE variable from the WaveVariable
array. The type field in WaveVariable is used to determine a variable’s type. To
access the data associated with a PV-WAVE variable it is necessary to use the data
pointer and cast it to the correct type. It is then possible to read and/or modify the
actual data value(s).

Example 1

The following is a simple program that retrieves a list of all PV-WAVE variables
and prints out their contents. The code fragment demonstrates several important
concepts.

• The data pointer must be cast to appropriate type.

• The data is always stored as a flat one-dimensional array.

• PV-WAVE structures are stored recursively.

You can find the following listed file in:

54 Application Developer’s Guide

$WAVE_DIR/demo/interapp/wavevars/example.c

#include <stdio.h>

#include "wavevars.h"

printallvars() /* display names & value of all WAVE variables */

 {

int nvars, i;

char **names;

WaveVariable *vars;

if (wavevars(&nvars,&names,&vars)) {

for (i=0; i<nvars; i++) {

fprintf(stderr,"%s\n",names[i]);

printvar(& (vars[i]));

fprintf(stderr,"\n");

}

free_wavevars(&nvars, &names, &vars);

}

}

printvar(v) /* print a WAVE variable on stderr */

WaveVariable *v;

{

if (v->name)

fprintf(stderr,"\ttag: ’%s’\n",v->name);

else

fprintf(stderr,"\ttag: \n");

if (v->read_only)

fprintf(stderr,"\tstat: READ_ONLY \n");

else

fprintf(stderr,"\tstat: READ/WRITE\n");

fprintf(stderr,"\tnelems: %d\n",
v->numelems);

fprintf(stderr,"\tndims: %d\n",v->numdims);

fprintf(stderr,"\tdims:%d %d %d %d %d %d %d %d\n",

v->dims[0],v->dims[1],v->dims[2],
v->dims[3],

v->dims[4],v->dims[5],v->dims[6],
v->dims[7]);

printdata(v,v->numelems);

}

 55

printdata(v,len)

WaveVariable *v;

int len;

{

int i;

if (v->type & TYP_ARRAY)

fprintf(stderr,"\ttype: ARRAY OF ");

else

fprintf(stderr,"\ttype: ");

switch(v->type & ~TYP_ARRAY) {

case TYP_BYTE:

{

char *b = ((char *)v->data);

fprintf(stderr,"BYTE\n");

fprintf(stderr, "\tdata: ");

for (i=0; i<len; i++)

fprintf(stderr, "%d ",(int)b[i]);

}

break;

case TYP_INT:

{

short *b = ((short *)v->data);

fprintf(stderr,"INTEGER\n");

fprintf(stderr, "\tdata: ");

for (i=0; i<len; i++)

fprintf(stderr, "%d ",(int)b[i]);

}

break;

case TYP_LONG:

{

long *b = ((long *)v->data);

fprintf(stderr,"LONG\n");

fprintf(stderr, "\tdata: ");

for (i=0; i<len; i++)

fprintf(stderr, "%ld ",b[i]);

}

break;

case TYP_FLOAT:

{

56 Application Developer’s Guide

float *b = ((float *)v->data);

fprintf(stderr,"FLOAT\n");

fprintf(stderr, "\tdata: ");

for (i=0; i<len; i++)

fprintf(stderr, "%g ",b[i]);

}

break;

case TYP_DOUBLE:

{

double *b = ((double *)v->data);

fprintf(stderr,"DOUBLE\n");

fprintf(stderr, "\tdata: ");

for (i=0; i<len; i++)

fprintf(stderr, "%g ",b[i]);

}

break;

case TYP_COMPLEX:

{

Complex *b = ((Complex *)v->data);

fprintf(stderr,"COMPLEX\n");

fprintf(stderr, "\tdata: ");

for (i=0; i<len; i++)

fprintf(stderr, "<%g,%g> ",b[i].r, b[i].i);

}

break;

case TYP_STRING:

{

char **b = ((char **)v->data);

fprintf(stderr,"STRING\n");

fprintf(stderr, "\tdata: ");

for (i=0; i<len; i++)

if (b[i])

fprintf(stderr, "’%s’ ",b[i]);

}

break;

case TYP_STRUCT:

{

WaveVariable *b=((WaveVariable *)
v->data);

fprintf(stderr,"STRUCTURE\n");

fprintf(stderr, "\tdata:");

for (i=0; i<len; i++) {

 57

fprintf(stderr, "\n");

printvar(&(b[i]));

}

}

break;

}

}

Example 2

For an example that shows how to call PV-WAVE and access its data space from a
C program, see Example 3 on page 41.

Example 3

For an example that shows how to call PV-WAVE and access its data space from a
FORTRAN program, see Example 3 on page 46.

Example 4

For an example that shows how to call a C program from within PV-WAVE and
have the C program access PV-WAVE’s variable data space, see Example 3 on page
34.

Example 5

For an example that shows how to call a FORTRAN program from within PV-
WAVE and have the FORTRAN program access PV-WAVE’s variable data space
(via a C wrapper), see Example 4 on page 35.

Special Considerations for Noninteractive Applications
If you are writing a noninteractive application — one for which no input is required
at the PV-WAVE prompt — then you may need to build some special handling into
your code for any nonblocking PV-WAVE widgets. You may also need to make
special arrangements for graphic-window resizing.

Using Nonblocking PV-WAVE Widgets

When PV-WAVE's input is not coming from an interactive terminal, then the non-
blocking Widget event loop (WwLoop,/NoBlock, for example) may not behave
as expected. This event loop is normally serviced as PV-WAVE “watches” the key-

58 Application Developer’s Guide

board. Thus, when you do not have an interactive terminal, the event loop is not
serviced.

Some examples of noninteractive applications include:

• Running commands from within a PV-WAVE procedure or batch file using @
or .RUN)

• Sending commands to PV-WAVE via a pipe using wavecmd()

• Running PV-WAVE in batch mode or redirecting standard input

• Using cwavec() or cwavefor() (see the Note, below)

In these situations, it becomes the programmer’s responsibility to service the event
loop. If you are running commands in a procedure file, then this can be as simple
as exiting back to the command prompt.

If you are running PV-WAVE as a background process, however, or in some mode
where you need a nonblocking event loop but do not have an interactive terminal,
then you will need call WtProcessEvent periodically to service the event loop.
To process all pending events, you call this function using the /Drain keyword .

Example

Say you have the following in a procedure file:

NAVIGATOR

; A non-blocking Widget application

WHILE (WtProcessEvent(/Drain) NE 1) DO BEGIN $

 PRINT, ’Still alive’ & $

 WAIT, 0.1

PRINT, ’Exiting’

EXIT

When you execute this procedure at the PV-WAVE prompt, the WHILE loop causes
WtProcessEvent to be called until the widget application is exited. Of course,
in a real case, you would do some other processing rather than just PRINT and
WAIT, but the point is that you need to call WtProcessEvent periodically and
check its return status (so you know when the Widget application is finished).

NOTE When you use cwavec() and cwavefor(), the normal behavior for
WwLoop, /NoBlock is to ignore the keyword and actually block. So if you call
cwavec() to execute a nonblocking Widget, PV-WAVE will service its own event
loop until the Widget exits. If you wish to have the event loop nonblocking, then

 59

you must call WtProcessEvent periodically to process the events and use
WwLoop, NoBlock=2 to force the nonblocking behavior.

Window Resizing

PV-WAVE will not automatically recognize resizing of graphic windows when it is
not being run interactively (for example, using wavecmd() or cwavec()). To
notify PV-WAVE of window resizing use:

WSET, winid, /Resize

This command has the effect of updating the !D system variable. See WSET for
more information.

Communication with Remote Procedure Calls (UNIX Only)
PV-WAVE can communicate with user-written applications by establishing a cli-
ent/server relationship based upon Sun Remote Procedure Call (RPC) technology.
PV-WAVE is able to act as either the client or server depending upon the require-
ments of the particular user-written application. This means that the user-written
application can also act as either the client or server.

Remote Procedure Call (RPC) Technology

Remote procedure calls are a high-level communications paradigm which allow
distributed applications to be developed using procedure calls which shield the pro-
grammer from knowing the details of the underlying network mechanisms. RPC
implements a client-to-server communications system designed to support interap-
plication communication over a network. Data for RPC calls is transmitted using
the External Data Representation (XDR) Standard.

PV-WAVE uses RPC calls to transmit data in XDR format between hosts across the
network or between processes on the same host. The parameters used with the
functions CALL_UNIX or CALL_WAVE (described later in this section) are
“packed” into a proprietary variable structure, transmitted in an XDR format and
then “unpacked” and made available for PV-WAVE and/or the user’s application.

For the purpose of our discussion, the following terms and definitions are used. A
client initiates the remote procedure calls to a server. A server provides network
access to a collection of one or more remote applications. A server may support
multiple remote applications or multiple versions of the same remote application.

60 Application Developer’s Guide

A client initiates the interapplication communication by sending a procedure call
message to the server process and then waits (blocks) for a procedure reply mes-
sage. The procedure call message contains the remote application’s parameters,
among other things. The procedure reply message contains the results from the
remote application, among other things. Once the client has received the results
through the procedure reply message, the results are made available to the client
and program execution continues.

On the server side, the process is dormant while it awaits the arrival of a procedure
call message. When this message arrives, the server process extracts the parameters
passed from the client and passes them to the remote application. The remote appli-
cation performs its tasks with the supplied parameters and returns the results to the
server process. The server then sends a procedure reply message to the client and
returns to a dormant state awaiting the next procedure call message from a client.

Synchronization of Client and Server Processes

Because client and server processes can be started and run independently of one
another, it is possible for the client and server processes to be out of synchroniza-
tion. In general, especially on relatively unloaded systems, synchronization is not
a problem. However, it is good practice to ensure that the server process is in a state
that can handle client requests before the client process is started.

If PV-WAVE is the server process, then it should be in a state to begin receiving
client requests after the following message appears (assuming that the !Quiet sys-
tem variable is zero):

Compiled - UNIX_LISTEN

If an external program that you wrote is used as the server process, you might want
to include code in the program that lets PV-WAVE clients know when it is appro-
priate to begin RPC transactions.

Another alternative is simply to wait for a period of time before starting the client
process; however, the amount of time required will vary greatly depending on the
load of the client system and the load of the server system, which in some cases
may be the same system.

Linking a Server or a Client with PV-WAVE

The PV-WAVE archive library contains all the routines used for RPC-based inter-
application communication.

 61

Linking a Server

The following commands describe the steps required to link a user’s server code,
myserve.c and a user’s application code, myapp.c, with the PV-WAVE
archive library.

NOTE Compile and link options will vary by platform, and sometimes are site
specific. Refer to the appropriate makefile in $WAVE_DIR/util/rpc for sug-
gested compile and link options.

host> cc -c myserve.c

host> cc -c myapp.c

host> set arch=‘$WAVE_DIR/bin/arch‘

host> set ARCH=$WAVE_DIR/bin/bin.$arch

host> cc -o myserve myserve.o myapp.o \
$ARCH/rpc.$arch.a

With the following command, the server is started in the background on the desired
server host machine.

host> myserve &

The user can now access the remote application by using the system function
CALL_UNIX at the WAVE> prompt.

Linking a Client

In order to link a user application which is a client to communicate with PV-WAVE
as a server, use the following commands:

host> cc -c myclient.c

host> cc -o myclient myclient.o \
$ARCH/rpc.$arch.a

Once PV-WAVE has been started in the server state, the user can run his or her
application client program.

host> myclient

Using PV-WAVE as a Client: CALL_UNIX

CALL_UNIX is designed to allow users to access applications on the same host
machine running PV-WAVE or across a network to a remote host.

The usage for CALL_UNIX is:

CALL_UNIX(param [, ...])

62 Application Developer’s Guide

where param is a variable parameter of any PV-WAVE type.

For a complete description of CALL_UNIX, see the PV-WAVE Reference.

In most cases where PV-WAVE is the client, a user desires to send data from PV-
WAVE to an existing application to perform specific tasks and return the result to
PV-WAVE for further analysis. In any case, the user must write a server process
which acts as an interface between PV-WAVE and his or her application. The fol-
lowing figure shows schematically how PV-WAVE is used as a client.

Figure 2-2 Interapplication Communication: PV-WAVE as Client

When using PV-WAVE as a client, users must first write a server to interface
between PV-WAVE and their application. The server makes a call to the PV-WAVE
RPC interface module w_listen, which is discussed in the section Description
of C Functions Used with CALL_UNIX on page 63. When the server is started in

WAVE> istat = CALL_UNIX(proc='myapp',$
host='machine2', 1000L, $
findgen(1000))

host> myserver &

CALL_UNIX

establish connection
pack data
transfer data

Client side
Machine 1

unpack data
store data in PV-WAVE
vars: istat

WAVE> print, istat

.

.

.
w_listen

establish connection

unpack data

user app.

pack and
return data

Server side
Machine 2

 63

the background, w_listen “sits and waits” for a procedure call message from
PV-WAVE with the appropriate program number.

Once the server has been placed in this state, PV-WAVE as the client initiates the
interapplication communication by calling CALL_UNIX with the necessary
parameters and keywords. CALL_UNIX opens a socket for communication, packs
the parameters into XDR format and then transfers the data to the server. The data
is then “unpacked” by using w_get_par, which is discussed in the section
Description of C Functions Used with CALL_UNIX on page 63.

It is essential that argument parameters passed to the server be in the proper order
and be of the expected type and structure. The type, number and structure of param-
eters can be checked within a PV-WAVE procedure before the call to the server is
made. The unpacked parameters can then be used in a call to the remote
application.

After execution of the remote application is complete, the results are passed back
to PV-WAVE using one of the following three routines:

w_smpl_reply — Use this C routine when no passed parameters have been
modified and there is only a single return value/array.

w_send_reply— Use this C routine if the input parameters have been modified
and must be sent back to PV-WAVE in addition to some return value/array.

w_cmpnd_reply — Use this C routine to return multi-dimensional arrays.

Once the results have been returned to PV-WAVE, program control returns to PV-
WAVE. The server can either exit or enter a new wait state.

Description of C Functions Used with CALL_UNIX

As explained previously, the CALL_UNIX function allows PV-WAVE to commu-
nicate with a user-written application. CALL_UNIX sends parameters to a server
process which then calls the user-written application.

The server uses the following C routines, which are discussed in detail later in this
section:

• w_listen — Connect with the process running PV-WAVE.

• w_get_par — Get the parameters.

• w_send_reply, w_smpl_reply, or w_cmpnd_reply — Send values
and parameters back to PV-WAVE.

If an error occurs in a call to CALL_UNIX, it returns –1. The function
ON_IOERROR can also be used to catch CALL_UNIX errors.

64 Application Developer’s Guide

w_listen

When placed in an external C source file, allows the routine to “sit and wait” until
it is called.

Usage

int w_listen (int program_number, char **user, char **procedure)

Discussion

When w_listen exits, the values of the parameters user, and procedure have
been set. Use these strings in the external routine to control access to, and program
flow in, the external routine.

Returned Value

w_listen returns a status of –1 if an error occurs, 1 otherwise.

Input Parameters

program_number — A unique identifier, set within the external routine that
enables w_listen to determine which calls from CALL_UNIX are intended for
this particular server. If the value of program_number is the same as the value of
program_number in another server, the communication with the first server will be
lost. If communication with a server is lost, use the kill -9 command.

user — A pointer to a string pointer. The parameter user is set by the keyword User
in the CALL_UNIX call and set by w_listen. The intended use of user is to con-
trol access to the external routine. The memory that holds the string has already
been allocated.

procedure — A pointer to a string pointer. The parameter procedure is set by the
keyword Procedure in the CALL_UNIX call. The intended use of procedure is to
control program flow in the external routine. The memory that holds the string has
already been allocated.

w_get_par

Returns a specified parameter passed by CALL_UNIX.

Usage

char *w_get_par (int param_number, type);

 65

Parameters

param_number — The index of the list of parameters. param_number is zero-
based, so a value of zero will cause w_get_par to return a pointer to the first
parameter, a value of one will cause w_get_par to return a pointer to the second
parameter and so on.

type — The type of variable to be retrieved.

Discussion

Because of the way that functions are declared in C, w_get_par returns a pointer
to a char, which is then cast to a pointer to the type of parameter desired. The space
pointed to by the return value is allocated and freed by the RPC software. When the
external routine replies to the client, the allocated space is freed. Thus, if there is a
need to save a value returned by w_get_par, the value pointed to by the return
value of w_get_parmust be copied into a variable. w_get_par returns NULL
if there is no such parameter or the specified parameter is not of the specified type.

The types are defined in the file $WAVE_DIR/util/rpc/
wave_rpc_extern.h. For example, TYP_LONG will cause w_get_par to
return a pointer to a long. To specify an array, perform a bitwise OR of the type of
the array with the constant TYP_ARRAY. For example, if the third parameter
passed from CALL_UNIX to the server is an array of long, you would use the fol-
lowing code to get the array:

long *example_long_array;

example_long_array = (long *) w_get_par (2, TYP_LONG | TYP_ARRAY);

After the external routine has completed its processing, it will need to return infor-
mation to the client. Three routines are supplied that are used to return the
information. All three of these routines return a status value of –1 to indicate an
error and 0 to indicate success.

NOTE When one of these three routines is called, all the memory that the param-
eters occupied in the RPC software is freed. In the preceding example, the array
that example_long_array points to will be freed.

w_smpl_reply and w_send_reply

• w_smpl_reply — Sends a single value array as the return value of
CALL_UNIX.

• w_send_reply — Is used when it is necessary to modify and return param-
eters that have been passed in from CALL_UNIX.

66 Application Developer’s Guide

Usage

int w_simpl_reply (type, long number_of_items, char *items);

int w_send_reply (type, long number_of_items, char *items);

Parameters

type — The type of variable to be returned, as defined in the file:

$WAVE_DIR/util/rpc/wave_rpc_extern.h

To specify an array, perform a bitwise OR of the type of the array with the constant
TYP_ARRAY.

number_of_items — The number of items to be returned by the server. If an array
is being returned, number_of_items is the length of the array, otherwise,
number_of_items is set to one.

items — A pointer to the item(s) being returned. w_smpl_reply and
w_send_reply expect pointers to char, so they may have to be type cast.

Discussion

w_smpl_reply can be thought of as giving the CALL_UNIX function a call by
value parameter-passing mechanism. Only scalar values or single-dimension
arrays (vectors) or scalars can be returned by w_smpl_reply.

With w_send_reply, data passed to a server cannot “grow”. If the server was
passed FLTARR(100), the remote application cannot “grow” this to
FLTARR(1000) and return it. Thus, w_smpl_reply can be thought of as giv-
ing the CALL_UNIX function a call by reference parameter-passing mechanism.
Only single-dimension arrays or scalars can be returned by w_send_reply.

w_cmpnd_reply

Passes a multi-dimensional array back from the server.

Usage

int w_cmpnd_reply (unsigned char reply_only, type, unsigned char
number_dimensions, long dimensions[], char *items);

Parameters

reply_only — A flag that determines if the parameters sent by the client are modi-
fied and returned by the server. If reply_only has a value of one, then the parameters
sent from the client are not returned by the server (call by value). Any other value

 67

of reply_only will cause the (possibly modified) parameters that were sent by the
client to be sent by the server back to the client (call by reference).

type — The type of variable to be returned. The types are defined in the file
$WAVE_DIR/util/rpc/wave_rpc_extern.h. To specify an array, per-
form a bitwise OR of the type of the array with the constant TYP_ARRAY.

number_dimensions — The size of the dimensions array. The maximum value is
eight.

dimensions — An array containing the sizes of the each of the array dimensions.
To specify a 4 x 5 x 6 array, set number_dimensions to 3, and dimensions to [4,5,6].

items — A pointer to the item(s) being returned. w_cmpnd_reply expect point-
ers to char, so they may have to be type cast.

Example Server

An example server, test_server.c, is provided online in the directory
WAVE_DIR/util/rpc. The file test_server.c contains three examples:

• Example_1— Accepts an array of long values. The array is passed to a func-
tion where each value is multiplied by two. The result is passed back and
placed into the PV-WAVE variable newarray.

newarray = CALL_UNIX(proc=’example_l’, $
1000L, lindgen(1000))

print, newarray

• Example_2 — Accepts a string and returns a string. An array of strings is
passed to the server and then printed. A new string is returned and placed in the
PV-WAVE variable message.

strings=[’one’, ’two’, ’three’, ’four’, ’five’]

message=CALL_UNIX(proc=’example_2’, 5, strings)

print, message

• Example_3 — Accepts a long array. This array is then filled by pseudo ran-
dom numbers and returned. This example shows how to modify a passed
parameter rather than always returning a result to a new variable. All parame-
ters passed to the server in this example must be variables, otherwise, when the
server attempts to modify a parameter, PV-WAVE complains about not being
able to store a value into a constant. old_arraywill contain an array of 1000
pseudo random numbers.

old_array=lonarr(1000)

old_arr_len=l000L

68 Application Developer’s Guide

new_len=CALL_UNIX(old_arr_len, old_array, proc=’example_3’)

print, new_len, old_array

Example Using CALL_UNIX

See Example Procedure Using CALL_UNIX with PV-WAVE as Client on page 73
for example code showing a PV-WAVE client procedure that uses CALL_UNIX.

And see Example External C Routine as a Server on page 75 for an example of the
corresponding server.

Using PV-WAVE as a Server: CALL_WAVE

CALL_WAVE is designed to allow users to access PV-WAVE from existing or
planned applications on the same host machine running PV-WAVE or across a net-
work to a remote host. In most cases where PV-WAVE is the server, the user desires
to send data to PV-WAVE either to access PV-WAVE’s analytical routines or for
plotting. In any case, the user must write a client process which acts as an interface
between PV-WAVE and his or her application. See Figure 2-3 for an example of
PV-WAVE as a server.

To run PV-WAVE as a server, start-up PV-WAVE and run a procedure which calls
UNIX_LISTEN.

NOTE UNIX_LISTEN and several other procedures discussed in this section are
located in the WAVE_DIR/util/rpc directory.

In addition, the file $WAVE_DIR/util/rpc/RPC.README contains informa-
tion on using RPCs and how PV-WAVE can be run as a server in the background,
in another window, or on another host machine.

PV-WAVE is now in a “sit and wait” state. The user client application then initiates
the interapplication communication by calling CALL_WAVE with the necessary
parameters and keywords. CALL_WAVE opens a socket for communication, packs
the arguments into XDR format and then transfers the data to PV-WAVE.

UNIX_LISTEN receives this procedure call message, unpacks the data from the
client and then makes it available to PV-WAVE for some type of processing.
UNIX_LISTEN can also return two strings to the PV-WAVE environment. These
strings can contain specific PV-WAVE commands that specify the desired process-
ing that should take place. Once this processing has been completed, PV-WAVE
returns the results to the client application through UNIX_REPLY. When the

 69

results have been returned, program control returns to the client while PV-WAVE
can either exit or enter a new wait state.

Figure 2-3 Interapplication Communication: PV-WAVE as Server

user app.

CALL_WAVE

establish connection
pack data
transfer data

Client side
Machine 1

-unpack data into local vars
-return control to user app.

user app.

continue

WAVE> wait_for_myapp.pro

.

.

.

unix_listen

.

.

.

listening for
call_wave

unpack data
establish connection

perform tasks
in PV-WAVE

unix_reply

pack data
for return

Server side
Machine 2

70 Application Developer’s Guide

Description of C Functions Used with PV-WAVE as Server

CALL_WAVE

Calls a server and returns a pointer to a UT_VAR after the server has completed its
task.

Usage

UT_VAR *CALL_WAVE(int argc, UT_VAR *argv[], char hostname [], int *unit,
int close_unit, int program, char *procedure, char *user, int time_out)

Parameters

argc — The number of values in argv. argc is also the number of parameters that
will be passed to PV-WAVE.

argv — An array of pointers to UT_VAR. The UT_VARs contain the parameters
that will be passed to PV-WAVE. It is up to the application to load these structures
properly.

hostname — The name of the machine that the server (PV-WAVE) is running on.
hostname is necessary because there could be several servers, each with the same
program number, but running on different machines.

unit — A number that maps to an RPC socket. The purpose of unit is to allow the
reuse of an open RPC socket, and thus avoid the overhead of re-opening the socket
each time CALL_WAVE is called. However, based on experience, this overhead is
not normally noticeable. If CALL_WAVE is called with NULL in the place of unit,
no value is returned and a new socket is opened and closed after CALL_WAVE
exits. If *unit is zero (i.e., unit == 0 and CALL_WAVE receives &unit),
then a socket is opened and the socket number is returned in *unit. If *unit is
greater than zero, socket number unit is used.

close_unit — A flag telling CALL_WAVE to close unit after CALL_WAVE
exits. If close_unit is non-zero, the unit is closed.

program — A number identifying which server the application is calling. program
is supplied in the C routine on the client. The value of program is the same value
of the keyword Program in the UNIX_LISTEN call. If the UNIX_LISTEN call did
not have the Program keyword in it, use zero for the value of program.

procedure — A string that is sent to the server. In the server, the UNIX_LISTEN
keyword Procedure is used to retrieve the string. user is intended to be used for
controlling program flow within the server.

 71

user — A string that is sent to the server. In the server, the UNIX_LISTEN keyword
User is used to retrieve the string. procedure is intended to be used for controlling
access to the routines within the server.

time_out — The time, in seconds, that CALL_WAVE will wait for PV-WAVE to
complete its task. There is no value for infinite time.

Discussion

The function CALL_WAVE calls a server and returns a pointer to a UT_VAR after
the server has completed its task. UT_VAR is a structure for holding any valid type
of PV-WAVE variable. This UT_VAR pointer points to the value sent back in the
reply parameter of UNIX_REPLY. Upon receiving a pointer to a UT_VAR, the
application must determine the type of variable it references. The definitions of
UT_VAR and other types can be found in the file:

$WAVE_DIR/util/rpc/wave_rpc_extern.h

For convenience, here is the definition of UT_VAR:

typedef struct

{

unsigned char type,

unsigned char element_size;

unsigned char n_dim,;

long dim[MAX_ARRAY_DIM];

UT_TYPES value;

} UT_VAR;

PV-WAVE Functions Used with PV-WAVE as Server

The UNIX_LISTEN and UNIX_REPLY functions are used when PV-WAVE is
acting as a server.

UNIX_LISTEN

The UNIX_LISTEN function allows PV-WAVE to be called by external routines
written in C. UNIX_LISTEN waits until an external routine calls the function
CALL_WAVE, and then returns the number of parameters with which it was called.

The parameters are accessed in the common block UT_COMMON, which is included
in the server routine with the command @UT_COMMON. The first parameter is
ut_param0, the second is ut_param1, and the thirtieth parameter is ut_param29. As
well as being returned, the number of parameters is also contained in the variable
ut_num_params in the UT_COMMON common block.

72 Application Developer’s Guide

For more detailed information on UNIX_LISTEN and its keywords, see the PV-
WAVE Reference.

UNIX_REPLY

When PV-WAVE has completed its processing and is ready to return information
to the client, the function UNIX_REPLY is called. UNIX_REPLY has one param-
eter, reply, which is a variable that is sent back to the client. The CALL_WAVE
function returns a pointer to a UT_VAR variable with the value of reply to the cli-
ent. A keyword, Return_Params, is used if the server must modify the incoming
parameters and return them. The number of parameters that is sent back is the same
as the number that came in. This number is tracked internally by PV-WAVE.

For more detailed information on UNIX_REPLY and its keywords, see the PV-
WAVE Reference.

Examples Using PV-WAVE as a Server

See Example Procedure Using UNIX_LISTEN and UNIX_REPLY with PV-WAVE
as a Server on page 84 for a code example that illustrates the interaction between
a client application using CALL_WAVE and PV-WAVE as a server using the PV-
WAVE functions UNIX_LISTEN and UNIX_REPLY.

An example client, test_client.c, is provided on the distribution tape in
WAVE_DIR/util/rpc.

See also the code listings Example C Routine with CALL_WAVE as a Client on page
77 and Example C Function to Load a UT_VAR on page 81.

Remote Procedure Call Examples
This section contains the following RPC examples. Each example was referred to
previously in this chapter:

• Example Procedure Using CALL_UNIX with PV-WAVE as Client on page 73.

• Example External C Routine as a Server on page 75.

• Example C Routine with CALL_WAVE as a Client on page 77.

• Example C Function to Load a UT_VAR on page 81.

• Example Procedure Using UNIX_LISTEN and UNIX_REPLY with PV-WAVE
as a Server on page 84.

 73

NOTE If you are running on a Solaris system, note the following: When register-
ing an RPC server on a program/version pair, Solaris checks that the user is allowed
to register. If another user already registered a server for a program/version pair,
Solaris will refuse the new registration. The owner of the pair must run rpcinfo
with the -d option to delete the RPC service of the program/version pair before
another user can register at that location. Use rpcinfo to check ownership.

Example Procedure Using CALL_UNIX with PV-WAVE as Client

You can find the following listed file in:

$WAVE_DIR/util/rpc/wave_client.pro

;This PV-WAVE procedure tests an array

;of samples from a single host or list of

;hosts. Each array will he a LONG array of

;length LENGTH. TIMES specifies the number

;of times to call each host.

PRO samples, length=length, times=times, $ hostlist=hostlist

IF (N_ELEMENTS(times) eq 0) THEN times=100

IF (N_ELEMENTS(length) eq 0) THEN length=1000

IF (N_ELEMENTS (hostlist) eq 0) THEN $
hostlist= ’localhost’

;See if hostlist is a single host or a

;list of hosts

num_hosts = SIZE(hostlist)

IF(num_hosts(0) EQ 0) THEN BEGIN

;hostlist is a single hostname

;make it a string array of length 1

name = hostlist

hostlist = strarr(1)

hostlist(0) = name

num_hosts = 1

ENDIF ELSE BEGIN

;hostlist is an array of hosts

;num_hosts is now number of hosts

num_hosts = num_hosts(1)

ENDELSE

;connect is an array to store "unit" values

74 Application Developer’s Guide

connect = LONARR(num_hosts)

;The server (external C routine) is expecting

;a LONG. It’s important to pass a LONG, so

;that the SERVER will not "die", i.e.:

; Segmentation Violation : (core dumped)

length = LONG(length)

xpos = 0

ypos = 0

xsize = 300

ysize = 300

;Open one window for each host to monitor

FOR i=0, num_hosts - 1 DO BEGIN
hostname = hostlist(i)
PRINT, ’Opening Window for ’+hostname
WINDOW, i, colors=128, title= ’ Data from $
’+hostname, xpos=xpos, ypos=ypos, $
xsize=xsize, ysize=ysize

xpos = xpos + xsize + 20
IF (xpos GT 800) THEN BEGIN
xpos = 0
ypos = ypos + ysize + 30
END

ENDFOR

; Draw the plots with color

IF(!d.n_colors GT 2) THEN BEGIN
!p.background = 12
!p.color = 127
LOADCT,4

ENDIF

;Loop through the server the correct number

;of times

FOR j=1, times - 1 DO BEGIN

;Call each host and save the connection "unit"

FOR i=0, num_hosts - 1 DO BEGIN
; plot in the correct window
WSET, i

;A temporary variable is needed because

;PV-WAVE is not able to store into an

;expression

 75

unit = connect (i)

;This is the call to the external
;routine/server

array = CALL_UNIX (length, hostname= $
hostlist (i), unit=unit)

;After the first call, connect (i) stays

;the same

connect (i) = unit
PLOT, array

;Empty the graphics buffer

EMPTY
ENDFOR

ENDFOR

;This is the last time; close all units

FOR i=0, num_hosts - 1 DO BEGIN
WSET, i
unit = connect (i)

;connect(i) is closed after this call

array = CALL_UNIX (length, hostname= $
hostlist (i), unit=unit, /close)
PLOT, array
EMPTY

ENDFOR

END

Example External C Routine as a Server

You can find the following listed file in:

$WAVE_DIR/util/rpc/samples.c

#include "wave_rpc_extern.h"

/***************************************

This is an example of a simple server. It does little error checking

and thus can core dump. If, however, PV-WAVE always sends the correct

parameters, there is no problem.

76 Application Developer’s Guide

This program is intended to respond to the PV-WAVE statement:

ARRAY = CALL_UNIX(num_samples)

where num_samples is a LONG. The PV-WAVE procedure SAMPLES.PRO

gives an example of how to access this server.

***/

#define MAX_SAMPLES 100000

main (argc, argv)

int argc;

char *argv[];

{

 int i, id;

 char *user, *proc;

 long num_samples, samples[MAX_SAMPLES];

/* If no program number is specified, 0 is the default */

 if (argv[1] != NULL) {
 id = atoi (argv[1]);
 }

 else {
 id = 0;
 }

/* Forever or until "kill -9" */

 while (1) {

/* Listen for PV-WAVE to call via
"CALL_UNIX(params)" */

 w_listen (id, &user, &proc);

/* WAVE_LONG is a macro that evaluates to:
*(long *)w_get_par(0, TYP_LONG);

w_get_param will return NULL if the parameter is not a long. The
NULL pointer could cause a segmentation violation and cause a
core dump. It is ok, however, as long as PV-WAVE passes expected
values. */

 num_samples = WAVE_LONG;

 /* Generate the samples. rand() returns a random number */

for (i = 0; i < num_samples; i++)
samples[i] = rand();

/* Reply to PV-WAVE with the array "samples". Only "num_samples" are
used. PV-WAVE will receive a LONG array num_samples in length.
W_SMPL_REPLY() does not return the passed parameters to PV-WAVE.

 77

Since this routine didn’t modify any of the parameters there is
no need to return them */

w_smpl_reply (TYP_LONG, num_samples,
samples);

 }

}

Example C Routine with CALL_WAVE as a Client

You can find the following listed file in:

$WAVE_DIR/util/rpc/test_client.c

#include "wave_rpc_extern.h"

/***

This is an example of a client C program that calls a PV-WAVE server.
First, a LONG array is generated with "rand ()". The array is
then sent to PV-WAVE along with a smoothing factor and a plot
title. The following PV-WAVE procedure is used to accept the
information, smooth the array, and return it as the result of
"CALL_WAVE()". Optionally, PV-WAVE will plot the smoothed array.

This program can be started in two fashions: (program is the name of
the executable version of this program)

program

or

program program_number hostname

The program number is needed if the PV-WAVE SERVER was started with
a program number other than the default value of 0. The hostname
is needed if the server is not running on "localhost".

***/

/* Length of the array to be smoothed */

#define ARRAY_LENGTH 200

/* Window to use for smoothing */

#define SMOOTH_FACTOR 5

main (argc, argv)

int argc;

char *argv[];

{

 int make_single_array ();

/* Code to create a UT_VAR; follows main() */

78 Application Developer’s Guide

 int i, id, j, unit, status, times;

 char *title;

 UT_VAR *retval;

/* Variables are passed to WAVE using "UT_VAR"s; see
wave_rpc_extern.h for definition. While only 3 UT_VARs are used
in this example, up to 30 variables may be passed. ut_arr[3] and
ut_arr[4] are not used in this example and are not necessary and
are there for convenience. */

static UT_VAR ut_arr[5];

/* "call_wave" expects an array of UT_VAR pointers */

 static UT_VAR *argptr[] = {

 &ut_arr[0],

 &ut_arr[1],

 &ut_arr[2],

 &ut_arr[3],

 &ut_arr[4]};

/* While the actual user of "procedure" and "user" are actually
determined by the SERVER, it is suggested that the "procedure"
parameter be used to select a particular function inside the
SERVER and the "user" parameter be used as site-specific secu-
rity. */

char *user, *procedure, *hostname;

long num_neighbors, long_arr[ARRAY_LENGTH];

/* If no pargram number was specified, use 0 */

 if (argc >= 2) {

 id = atoi (argv[1]);

 }

 else {

 id = 0;

 }

/* If no hostname was specified, use "localhost" */

 if (argc >= 3) {

 hostname = argv[2];

 }

 else {

 hostname = "localhost";

 }

/* Fake user data; generally used for site-specific security */

 user = "Test Client User Data";

 79

/* Function inside the server that this CLIENT wishes to access */

 procedure = "SMOOTH";

/* Title for plot */

 title = "Smoothed Random Numbers";

/* Window to use for smoothing */

 num_neighbors = SMOOTH_FACTOR;

/* Figure how many times to call the server */

 printf("Number of times to call SERVER %s :", hostname);

 scanf ("%d", ×);

 for (j = 0; j < times; j++) {

/* Generate a random array */

 for (i = 0; i < ARRAY_LENGTH; i++) {
long_arr[i] = rand ();

 }

/* Create a UT_VAR with smoothing factor */

 status = make_single_array (argptr[0],

 TYP_LONG, 1, &num_neighbors);

 if (status < 0) {
sprintf(stderr,"Error building UT_VAR\n");

 exit (1);

 }

/* Create UT_VAR with long array */

 status = make_single_array (argptr[1],
TYP_LONG | TYP_ARRAY, ARRAY_LENGTH,
long_arr);

 if (status < 0) {

 sprintf (stderr, "Error building UT_VAR\n");

 exit (1);

 }

/* Make UT_VAR with title */

 status = make_single_array (argptr[2],

 TYP_STRING, 1, &title);

 if (status < 0) {
sprintf(stderr,"Error building UT_VAR\n");

 exit (1);

 }

80 Application Developer’s Guide

/**

 This is the call to the SERVER. The SERVER’s response will be
pointed to by "retval".

CALL_WAVE() is used in by :

RETURN_VALUE = CALL_WAVE(number of UT_VARs in parameter array,
parameter array (UT_VAR *array[]), name of host to call, unit
(NULL means don’t care) close (if 1, close specified unit), pro-
cedure name, user data, timeout in secs (0 means use default))

The unit parameter provides a way to maintain a connection between
the SERVER and CLIENT. If unit is non-null and points to an inte-
ger = 0, then once the connection is established it is left open.
Further calls using that unit will use the existing connection
instead of creating a new one. If close is 1, then the connection
is closed after the call.

Using the unit parameter causes extra file descriptors to be left
open inside the UNDERTOE CLIENT. Since there is a limit on the
number of open file descriptors, don’t leave too many units open.
Using the unit parameter is useful when establishing the connec-
tion takes a long time. Tests on several machines have shown that
this time is generally much less than a second. That delay is
only a significant portion of the total transfer time if the total
data transfer is < 10,000 bytes and the SERVER’s computation time
is negligible. So to avoid some added housekeeping, use NULL

**/

retval = (UT_VAR *) call_wave (3, argptr, hostname,

 NULL, 0, id, procedure, user, 0);

/* Check the type of the returned parameter */

/* If it is not an error and it’s an array, print it */

 if (retval->type == (TYP_LONG | TYP_ARRAY))
{
for (i = 0; i < ARRAY_LENGTH; i++) {

 /* value.array is defined as (char *) so cast to the appropriate
type. */

 printf ("%d ", ((long *)
retval->value.array)[i]);

 }

 }

 else {

 printf("SERVER did not return \n");

printf("expected value\n");

 printf ("Returned from call_wave \n");

 81

printf ("retval type is %d \n",
retval->type);

}

}

}

Example C Function to Load a UT_VAR

You can find the following listed file in:

$WAVE_DIR/util/rpc/test_client.c

int make_single_array (ut_ptr, type, length, array_ptr)

unsigned char type; /* type of UT_VAR */

long length; /* length of array */

char *array_ptr; /* pointer to data */

UT_VAR *ut_ptr; /* pointer to UT_VAR */

{

/* Sample routine to build UT_VARs. This routine will only build
UT_VARs that are single dimensioned. To build a multi-dimensional
array set n_dim and dim[], i.e.:

A three dimensional array that is 4 by 5 by 6 would be:

ut_ptr->n_dim = 3;

ut_ptr->dim[0] = 4;

ut_ptr->dim[1] = 5;

ut_ptr->dim[2] = 6;

*/

/* switch on type ignoring the TYP_ARRAY
bit */

 switch (type & SIMPLE_MASK) {

 case TYP_BYTE:

 ut_ptr->type = TYP_BYTE;

 ut_ptr->element_size = sizeof (char);

 ut_ptr->n_dim = 1;

 ut_ptr->dim[0] = length;

 if (type & TYP_ARRAY) {

 ut_ptr->type = ut_ptr->type | TYP_ARRAY;

 ut_ptr->value.array = array_ptr;

 }

 else {

82 Application Developer’s Guide

 /* array_ptr is a (char *), cast to proper type */

 ut_ptr->value.c = *(unsigned char *)
array_ptr;

 }

 break;

 case TYP_INT:

 ut_ptr->type = TYP_INT;

 ut_ptr->element_size = sizeof (short);

 ut_ptr->n_dim = 1;

 ut_ptr->dim[0] = length;

 if (type & TYP_ARRAY) {

 ut_ptr->type = ut_ptr->type | TYP_ARRAY;

 ut_ptr->value.array = array_ptr;

 }

 else {

 /* array_ptr is a (char *), cast to proper type */

 ut_ptr->value.i = *(short *) array_ptr;

 }

 break;

 case TYP_LONG:

 ut_ptr->type = TYP_LONG;

 ut_ptr->element_size = sizeof (long);

 ut_ptr->n_dim = 1;

 ut_ptr->dim[0] = length;

 if (type & TYP_ARRAY) {

 ut_ptr->type = ut_ptr->type | TYP_ARRAY;

 ut_ptr->value.array = array_ptr;

 }

 else {

 /* array_ptr is a (char *), cast to proper type */

 ut_ptr->value.l = *(long *) array_ptr;

 }

 break;

 case TYP_DOUBLE:

 ut_ptr->type = TYP_DOUBLE;

 ut_ptr->element_size = sizeof (double);

 ut_ptr->n_dim = 1;

 ut_ptr->dim[0] = length;

 83

 if (type & TYP_ARRAY) {

 ut_ptr->type = ut_ptr->type | TYP_ARRAY;

 ut_ptr->value.array = array_ptr;

 }

 else {

 /* array_ptr is a (char *), cast to proper type */

 ut_ptr->value.d = *(double *) array_ptr;

 }

 break;

 case TYP_FLOAT:

 ut_ptr->type = TYP_FLOAT;

 ut_ptr->element_size = sizeof (float);

 ut_ptr->n_dim = 1;

 ut_ptr->dim[0] = length;

 if (type & TYP_ARRAY) {

 ut_ptr->type = ut_ptr->type | TYP_ARRAY;

 ut_ptr->value.array = array_ptr;

 }

 else {

 /* array_ptr is a (char *), cast to proper type */

 ut_ptr->value.f = *(float *) array_ptr;

 }

 break;

 case TYP_COMPLEX:

 ut_ptr->type = TYP_COMPLEX;

 ut_ptr->element_size = sizeof (COMPLEX);

 ut_ptr->n_dim = 1;

 ut_ptr->dim[0] = length;

 if (type & TYP_ARRAY) {

 ut_ptr->type = ut_ptr->type | TYP_ARRAY;

 ut_ptr->value.array = array_ptr;

 }

 else {

 /* see wave_rpc_extern.h for definition of COMPLEX array_ptr is a

 * (char *), cast to proper type */

 ut_ptr->value.cmp.r = ((COMPLEX *)
array_ptr)->r;

84 Application Developer’s Guide

 ut_ptr->value.cmp.i = ((COMPLEX *)
array_ptr)->i;

 }

 break;

 case TYP_STRING:

 ut_ptr->type = TYP_STRING;

 ut_ptr->element_size = sizeof(char);

 ut_ptr->n_dim = 1;

 ut_ptr->dim[0] = length;

 if (type & TYP_ARRAY) {

 /* a string array is an array of (char *) */

ut_ptr->element_size=sizeof (char*);

 ut_ptr->type = ut_ptr->type | TYP_ARRAY;

 ut_ptr->value.array = array_ptr;

 }

 else {

/* array_ptr is a (char *), cast to proper type */

 ut_ptr->value.string = *(char **)
array_ptr;

 }

 break;

 default:

 /* unsupported types: at present
TYP_STRUCTURE is not supported */

 return (-1);

 break;

 }

}

Example Procedure Using UNIX_LISTEN and UNIX_REPLY with PV-
WAVE as a Server

You can find the following listed file in:

$WAVE_DIR/util/rpc/example_server.pro

;This is an example of using PV-WAVE as the

;SERVER. Times is the number of times to loop

;through the SERVER. Show specifies that the

;resulting array should be plotted.

 85

PRO example_server, Times=times, Show=show

@UT_COMMON

prog = 0

;Default is to loop through only once

IF (n_elements(times) EQ 0) then times = 1

WHILE(1) DO BEGIN

FOR i = 1, times DO BEGIN

;Listen for a call using the default program

;number zero. Return the received "procedure"

;string into the variable "proc"

n = UNIX_LISTEN(program = prog, procedure = $ proc)

;Make sure the proc is SMOOTH and we have the

;correct number of parameters

IF (n EQ 3) and (proc EQ ’SMOOTH’) THEN BEGIN

;Smooth the array

array = SMOOTH(ut_param1, ut_param0)

;Return the array to the caller but do not

;return the parameters. To return the

;parameters, the call would be:

;

; status = UNIX_REPLY(array, /Return)

status = UNIX_REPLY(array)

;Only plot when told to do so

IF (keyword_set(show)) THEN BEGIN

!P.title = ut_param2

PLOT, array

EMPTY

ENDIF

ENDIF ELSE BEGIN

;The server did not get the correct proc or

;did not get the correct number of parameters

PRINT, ’EXAMPLE_SERVER MISMATCH: ’ + $
’PROC = ’,proc, ’ N_PARAMS = ’, n

 status = UNIX_REPLY(-1)

 ENDELSE

ENDFOR

ENDWHILE

END

86 Application Developer’s Guide

Interapplication Communication Using the Socket OPI
The PV-WAVE Socket OPI greatly simplifies the programming required to write
PV-WAVE client and server programs that communicate through sockets. Using
the Socket OPI routines, you can write client and server applications entirely in PV-
WAVE.

Sockets allow programmers to treat network connections as a stream of bytes that
can be read from or written to. Sockets handle such low-level tasks of data trans-
mission and network addresses, thereby freeing network programmers to
concentrate primarily on network applications.

The PV-WAVE Socket routines allow PV-WAVE applications to:

• listen for connections (server)

• initiate connections (client)

• read and write data through connections (client and server)

• terminate connections (client and server)

For detailed information on the Socket OPI routines, see Chapter 2, New
Commands.

The following table lists the Socket OPI routines and indicates whether a specific
routine is typically used in client applications, server applications, or both.

Function/Procedure Purpose
Where
Used

SOCKET_ACCEPT Function Waits for a connection on a
socket to occur.

Server

SOCKET_CLOSE Procedure Closes a socket connection. Both

SOCKET_CONNECT Function Connects to a socket at a given
host and port.

Client

SOCKET_GETPORT Function Returns the socket port number
for the specified socket.

Server

SOCKET_INIT Function Initializes a socket connection. Server

SOCKET_READ Function Reads data from a socket connec-
tion.

Both

SOCKET_WRITE Procedure Writes data to a socket connec-
tion.

Both

 87

Overview of a Client-Server Model Using Sockets

The following figure shows a typical client-server model using the PV-WAVE
Socket OPI.

On the server, socket port 1800 is intialized with the SOCKET_INIT function. The
SOCKET_ACCEPT function waits for a connection. The client initializes a con-
nection with the SOCKET_CONNECTION function. This function specifies a
host address (for example, www.vni.com) and a port number.

The SOCKET_READ and SOCKET_WRITE routines allow data to be sent
between the client and server, through the socket connection. SOCKET_WRITE
sends a byte array through an established socket connection. SOCKET_READ
retrieves the byte array.

Loading the Socket OPI

Before you can use the PV-WAVE socket routines, the Socket OPI (Optional Pro-
gramming Interface) must be loaded on the server and the client.

To load the Socket OPI execute the program file (batch file) SOCKET_STARTUP
at the PV-WAVE command line. For example:

WAVE> @SOCKET_STARTUP

Initializing a Socket

The SOCKET_INIT function allows you to specify which socket port on the server
machine will be used to “listen” for incoming client connections. This function

CLIENT SERVER

c=SOCKET_CONNECT(host,1800) s=SOCKET_INIT(1800)

SOCKET_WRITE,c,data

b=SOCKET_READ(c,data)

c=SOCKET_ACCEPT(s)

b=SOCKET_READ(c,data)

SOCKET_WRITE,c,data

SOCKET_CLOSE,s

88 Application Developer’s Guide

returns a handle for the socket. This handle is used by other Socket OPI functions
to refer to the socket.

In the following lines, socket port 1800 is initialized with SOCKET_INIT, and then
the resulting socket descriptor is passed to the SOCKET_ACCEPT function, which
listens for client connections.

socketID=SOCKET_INIT(1800)

connection=SOCKET_ACCEPT(socketID)

Listening for a Socket Connection

After a socket is initialized, call the SOCKET_ACCEPT function to wait for client
connections. SOCKET_ACCEPT blocks further execution of the current applica-
tion until a connection is received. When a connection is received, the
SOCKET_ACCEPT function returns a handle for the connection. This handle is
then used to identify the connection in other socket routines, like SOCKET_READ
and SOCKET_WRITE.

In the following lines, SOCKET_READ is used to read data from a socket connec-
tion on the server.

socketID=SOCKET_INIT(1800)

myconnection=SOCKET_ACCEPT(socketID)

mydata=BYTARR(100)

nbytes=SOCKET_READ(myconnection, mydata)

Connecting to a Socket

Client applications use the SOCKET_CONNECT function to connect to a server
that is listening for a connection (that is, SOCKET_ACCEPT must be running on
the server). SOCKET_CONNECT specifies a host address (host name or IP
address) and a port number. This function returns a connection handle, which is
used in SOCKET_READ and SOCKET_WRITE to identify the connection.

The following call to SOCKET_CONNECT attempts to make a connection to port
80 on the Visual Numerics Web server. Then, SOCKET_WRITE sends data to the
remote sever using the established connection.

myconnection=SOCKET_CONNECT(’www.vni.com’, 80)

mydata=BYTE(’GET / HTTP/1.0\015\012\015\012’)

SOCKET_WRITE, myconnection, mydata

 89

Reading and Writing Data Between Client and Server

After a socket connection is established between a client and server, the routines
SOCKET_WRITE and SOCKET_READ are the mechanisms by which data is
sent and retrieved.

SOCKET_WRITE is a procedure that sends a byte array through the socket con-
nection. SOCKET_READ retrieves a byte array on the other side of the
connection.

It is up to the client and server software developers to decide how to encode and
decode the data that is sent and received by SOCKET_WRITE and
SOCKET_READ. The only requirement is that the data be a byte array.

TIP Use data extraction functions (BYTE, FLOAT, FIX, and so on) and
BYTEORDER with the Htons and Htonl keywords to format data for network
transmission.

Closing a Socket Connection

To close a socket connection, call SOCKET_CLOSE. This procedure takes one
argument, the connection handle (the result returned from SOCKET_CONNECT).

myconnection=SOCKET_CONNECT(’www.vni.com’, 80)

SOCKET_WRITE, myconnection, mydata

SOCKET_CLOSE, myconnection

Example

This example demonstrates a simple series of transactions between a client and a
server program. The client sends a string to the server, and the server prints the
string. The server then returns a string, which the client prints. A FOR loop repeats
this sending and receiving pattern a total of three times.

NOTE All data transmitted through PV-WAVE socket connections must be in the
form of a byte array.

The Server

This server program reads data sent from the client, prints the data, and sends data
back to the client.

90 Application Developer’s Guide

PRO SERVER

 port = 1500

 socket = SOCKET_INIT(port)

 connection = SOCKET_ACCEPT(socket)

 FOR i = 0,2 DO BEGIN

 data = BYTARR(15)

 nbytes = SOCKET_READ(connection,data)

 PRINT, ’SERVER received: ’, STRING(data)

 data = BYTE(’Server String ’ + STRTRIM(STRING(i),2))

 SOCKET_WRITE, connection, data

 PRINT, ’SERVER sent: ’, data

 ENDFOR

 SOCKET_CLOSE, connection

SOCKET_CLOSE, socket

END

The Client Program

This client program sends data to the server, then reads and prints data returned
from the server.

PRO CLIENT

 host = ’localhost’

 port = 1500

 socket = SOCKET_CONNECT(host,port)

 IF socket EQ -1 OR socket EQ -2 THEN BEGIN

 PRINT, ’SOCKET_CONNECT failed with return code: ’, socket

 RETURN

 ENDIF

 FOR i = 0,2 DO BEGIN

 data = BYTE(’Client String ’ + STRTRIM(STRING(i),2))

 PRINT, ’CLIENT sending: ’, data

 SOCKET_WRITE, socket, data

 data = BYTARR(15)

 nbytes = SOCKET_READ(socket,data)

 PRINT, ’CLIENT received: ’, STRING(data)

 91

 WAIT, 1

 ENDFOR

 SOCKET_CLOSE, socket

END

Running the Example

To run this example, do the following:

Step 1 Copy the server program into a file called server.pro.

Step 2 Copy the client program into a file called client.pro.

Step 3 Start PV-WAVE and enter the following command:

WAVE> .RUN server.pro

Step 4 Start another PV-WAVE session and enter the following command:

WAVE> .RUN client.pro

Step 5 Start the server program in the server session window by typing server
at the WAVE> prompt.

Step 6 Start the client program in the client session window by typing client
at the WAVE> prompt.

Client Program Output

In the client window, the following output appears:

CLIENT sending: 67 108 105 101 110 116 32 83 116 114 105 110 103 32 48

CLIENT received: Server String 0

CLIENT sending: 67 108 105 101 110 116 32 83 116 114 105 110 103 32 49

CLIENT received: Server String 1

CLIENT sending: 67 108 105 101 110 116 32 83 116 114 105 110 103 32 50

CLIENT received: Server String 2

Server Program Output

In the server window, the following output appears:

SERVER received: Client String 0

SERVER sent: 83 101 114 118 101 114 32 83 116 114 105 110 103 32 48

92 Application Developer’s Guide

SERVER received: Client String 1

SERVER sent: 83 101 114 118 101 114 32 83 116 114 105 110 103 32 49

SERVER received: Client String 2

SERVER sent: 83 101 114 118 101 114 32 83 116 114 105 110 103 32 50

Writing a Continuously Running Server

In the previous example, the server program stops running after the client closes its
socket connection. In some cases, you may want the server to continue running and
to wait for new client connections.

The key to writing a continuously running server is to enclose the
SOCKET_ACCEPT function and subsequent socket functions in an infinite loop.

In the following example, the previously discussed program server.pro is
modified so that it does not exit after the client connection is closed. Instead, the
program loops back to the SOCKET_ACCEPT statement and waits for another cli-
ent connection. Changes to the original program (only three lines) are shown in
boldface type.

PRO SERVER

 port = 1500

 socket = SOCKET_INIT(port)

 connection = SOCKET_ACCEPT(socket)

j=1

WHILE j EQ 1 DO BEGIN

 FOR i = 0,2 DO BEGIN

 data = BYTARR(15)

 nbytes = SOCKET_READ(connection,data)

 PRINT, ’SERVER received: ’, STRING(data)

 data = BYTE(’Server String ’ + STRTRIM(STRING(i),2))

 SOCKET_WRITE, connection, data

 PRINT, ’SERVER sent: ’, data

 ENDFOR

 SOCKET_CLOSE, connection

ENDWHILE

SOCKET_CLOSE, socket

END

93

CHAPTER

3

Interapplication Communication for
Windows

PV-WAVE provides a variety of methods for interapplication communication
under Windows. For example:

• PV-WAVE can execute external programs and exchange data with them.

• External programs can call PV-WAVE to perform graphics, data manipulation,
and other functions. Depending on the method used, the communication can
be unidirectional or bidirectional.

Methods of Interapplication Communication
The following table summarizes the communication methods that can be used
between PV-WAVE and other external applications. This table and the following
section, Choosing the Best Method on page 94, can help you to determine the most
appropriate method of interapplication communication to accomplish a desired
task. Each method listed is described in detail later in this chapter.

Method Use

LINKNLOAD A system routine that allows PV-WAVE to call an exter-
nal function via dynamic linked libraries. It is the sim-
plest method for calling your own C code from PV-
WAVE. Allows the transfer of binary data. See Using
LINKNLOAD to Call External Programs on page 96.

94 Application Developer’s Guide

Choosing the Best Method
It is important to select the most appropriate method of interapplication communi-
cation for your particular needs. Choosing the wrong method often requires much
more work than is necessary to accomplish a given task.

This section describes typical scenarios where some kind of interapplication com-
munication is required. After each scenario is described (in italics), a suitable
solution for interapplication communication is suggested.

I’m running PV-WAVE, and I want to execute an external program I’ve written. I’m
not really concerned about returning anything to PV-WAVE.

This is the simplest case of interapplication communication. The SPAWN proce-
dure is the best choice. SPAWN executes an external program, or an operating
system command, from PV-WAVE. SPAWN is described in the previous chapter.

cwavec A routine that allows a dynamically linked C program
to access PV-WAVE. Data is transferred between the C
program and PV-WAVE via the wavevars routine (or
PV-WAVE variable handles if you use the Option Pro-
gramming Interface).

cwavefor A routine that allows a dynamically linked FORTRAN
program to access PV-WAVE. Data is transferred
between the FORTRAN program and PV-WAVE via the
wavevars routine

DDE Dynamic Data Exchange functions allow client applica-
tions to call PV-WAVE and modify variables, query
variables, and execute functions and procedures.

Option
Programming
Interface (OPI)

For developers who want to create optional modules
that can be loaded explicitly by any PV-WAVE user.
These optional modules can be written in C or FOR-
TRAN, and can contain new system functions or other
primitives. For information on OPI, see the PV-WAVE
Programmer’s Guide.

Socket OPI Allows you to treat network connections as streams of
bytes that can be read from or written to. With the
Socket OPI, you can write client and server applications
entirely in PV-WAVE. The Socket OPI is described in
the previous chapter; see Interapplication Communica-
tion Using the Socket OPI on page 86.

Method Use

 95

I want to establish a connection between PV-WAVE and a client application. I want
the client to be able to send data to PV-WAVE and execute PV-WAVE functions,
such as its high level graphics display functions. I don’t want to link PV-WAVE with
the client application.

Dynamic Data Exchange (DDE) allows you to register PV-WAVE as a server appli-
cation with any client application. The DDE protocol permits communication
between applications without actually linking the applications into a single execut-
able application. Once PV-WAVE is registered as a server, the client can exchange
data with PV-WAVE and execute PV-WAVE functions.

I wrote a C program, and I want to be able to link it dynamically with PV-WAVE.
My program needs to be able to access data directly from the data space of PV-
WAVE. When my program is finished running, I want control returned back to PV-
WAVE.

The LINKNLOAD procedure is the simplest method for attaching your own code
to PV-WAVE. LINKNLOAD is a PV-WAVE system procedure that calls a function
in a Dynamic Link Library (DLL). When used in conjunction with the wavevars
function, data can be passed back and forth between the user-written routine and
PV-WAVE.

For information on LINKNLOAD, see Using LINKNLOAD to Call External
Programs on page 96. For information on the data transfer function wavevars
see Accessing Data in PV-WAVE Variables on page 109.

NOTE See also the section Using the Option Programming Interface on page 113.
The Option Programming Interface (OPI) functions allow user-written C code to
access PV-WAVE variables and use other PV-WAVE functionality. OPI provides
greater flexibility and control than wavevars.

I want to be able to call PV-WAVE from a C or FORTRAN program I’ve written. I
want the program to be dynamically linked with PV-WAVE.

The cwavec function allows a dynamically linked C program to access PV-
WAVE’s data space. Data is transferred between the C program and PV-WAVE via
thewavevars routine. In addition, thecwavefor function allows a dynamically
linked FORTRAN program to access PV-WAVE’s data space.

For information on cwavec see Calling PV-WAVE as a Dynamically Linked
Program on page 98. For information on the data transfer function wavevars see
Accessing Data in PV-WAVE Variables on page 109. The cwavefor routine is
discussed in the section cwavefor: Calling PV-WAVE from a FORTRAN Program
on page 103.

96 Application Developer’s Guide

NOTE See also the section Using the Option Programming Interface on page 113.
The Option Programming Interface (OPI) functions allow user-written C code to
access PV-WAVE variables and use other PV-WAVE functionality. OPI provides
greater flexibility and control than wavevars.

Using LINKNLOAD to Call External Programs
The LINKNLOAD function provides simplified access to external routines in
Dynamic Link Libraries (DLLs). LINKNLOAD calls a function in a DLL and
returns a scalar value. Parameters are passed through PV-WAVE to the specified
external function by reference, thus allowing the external function to alter values
of PV-WAVE variables. It is the simplest method for attaching your own C code to
PV-WAVE.

Usage

result = LINKNLOAD(object, symbol [, param1, ..., paramn])

Parameters
object — A string specifying the filename, optionally including file path, of the
DLL to be linked and loaded.

symbol — A string specifying the function name (symbol entry point) to be
invoked in the DLL file.

parami — The data to be passed as a parameter to the function.

For more detailed information on the LINKNLOAD parameters and optional key-
words see the discussion of LINKNLOAD in the PV-WAVE Reference.

Discussion
LINKNLOAD lets you call a C function from PV-WAVE almost as if you were
calling a PV-WAVE function. The called function can obtain information from PV-
WAVE through passed parameters or by accessing PV-WAVE’s variables directly
(see Accessing Data in PV-WAVE Variables on page 109).

Any PV-WAVE data type, except a structure, can be passed as a parameter to a C
routine. Parameters are always passed by reference (not by value), and thus it is up
to the programmer’s discretion whether or not the C function alters the parameter’s
value. Parameters are passed in the traditional C fashion of argc and argv. The C

 97

function must know the type to expect for each parameter and must cast it to a C
variable of the correct type.

NOTE Make sure the number, type, and dimension of the parameters passed to the
external function match what the external function expects (this can most easily be
done from within PV-WAVE before calling LINKNLOAD). Furthermore, the
length of string parameters must not be altered and multi-dimensional arrays are
flattened to one-dimensional arrays.

Accessing the Data in PV-WAVE Variables

The wavevars function can be used to access the results generated by PV-WAVE
in a user-written application called with LINKNLOAD.wavevars is a C function
that can be invoked from code that is dynamically linked to PV-WAVE to obtain
data from PV-WAVE’s data variable space.

The wavevars calling sequence is:

result = wavevars(&argc, &argv, &argp);

For detailed information on wavevars, see Accessing Data in PV-WAVE
Variables on page 109.

NOTE See also the section Using the Option Programming Interface on page 113.
The Option Programming Interface (OPI) functions allow user-written C code to
access PV-WAVE variables and use other PV-WAVE functionality. OPI provides
greater flexibility and control than wavevars.

Example 1: Calling a C Program

The C code referred to in this example can be found online. You can print the pro-
gram or view it online using any text editor. The example program is in the file:

%WAVE_DIR%\demo\interapp\win32\linknload\example.c

In this example, parameters are passed using the conventional argc, argv strategy.
argc indicates the number of data pointers which are passed from PV-WAVE within
the array of pointers called argv. The pointers in argv can be cast to the desired type
as the example program demonstrates.

98 Application Developer’s Guide

Building the DLL File

The makefile (called makefile) creates the DLL file used by LINKNLOAD to
link the C function to PV-WAVE at runtime. This makefile is in the same directory
as the source file example.c. At an MS-DOS Command window prompt, enter
the following command to build the DLL:

nmake

NOTE You must have a supported Windows C compiler on your system for this
makefile to execute properly.

Accessing the External Function with LINKNLOAD

The following PV-WAVE code demonstrates how the C function defined in this
example could be invoked.

ln = LINKNLOAD(’example.dll’,’WaveParams’, byte(1),2,long(3), $
float(4),double(5), complex(6,7),’eight’)

The resulting output is:

1 2 3 4.000000 5.000000 <6.000000,7.000000i> ’eight’

Using the INFO command, you can see that LINKNLOAD returns the scalar value
1.

INFO, ln
LN LONG = 1

The example program works with both scalars and arrays since the actual C pro-
gram above only looks at the first element in the array and since PV-WAVE
collapses multi-dimensional arrays to one-dimensional arrays:

ln = LINKNLOAD(’example.dll’,’WaveParams’, $
[byte(1)],[[2,3],[4,5]], [long(3)],$
[float(4)],[double(5)],[complex(6,7)], [’eight’])

The resulting output is:

 1 2 3 4.000000 5.000000 <6.000000,7.000000i> ’eight’

Calling PV-WAVE as a Dynamically Linked Program
An application written in C or FORTRAN can be linked with the PV-WAVE
Dynamic Link Libraries (DLLs), creating an application that can execute PV-
WAVE commands at runtime. The C or FORTRAN application passes PV-WAVE
commands to the entry points cwavec or cwavefor in the PV-WAVE DLL.

 99

cwavec: Calling PV-WAVE from a C Program

The routine cwavec, discussed in detail in this section, is the C application entry
point to a PV-WAVE DLL.

Usage

istat = cwavec(action, numcmds, cmds)

Parameters

action — Specifies how you wish PV-WAVE to execute. It can have one of the fol-
lowing values:

• action=1 — Run normally. You are interactively prompted for input and exe-
cution continues until you enter the end-of-file character or issue the EXIT
command. At this point, cwavec returns with a value of 1. Once cwavec has
been called in this mode, it should not be called again.

• action=2 — Execute the commands supplied by cmds array and return. The
return value is the value of the !Error system variable. The cwavec routine
can be called repeatedly in this mode.

• action=3 — It is necessary to wrap up the session by calling cwavec one last
time with action=3. This performs any housekeeping required by PV-
WAVE such as closing any open files. The return value for this mode is 1. Once
cwavec has been called in this mode, it should not be called again.

numcmds — The number of elements supplied in cmds. This argument is ignored
if action=3 or if action=1.

cmds — An array of pointers to strings. If action=2, cmds provides an array of
PV-WAVE commands to execute. This argument is ignored if action=3 or if
action=l.

Returned Value

istat — The returned value depends on the action selected, as explained previously.

Discussion

You can choose to communicate with PV-WAVE in either an interactive mode or
by sending an array of commands. Both of these methods automatically initialize
PV-WAVE.

The first parameter is the action parameter. The action parameter may have one of
the following the values:

100 Application Developer’s Guide

The third parameter is the name of an array of pointers to strings (i.e., char**)
containing the PV-WAVE commands to be executed. The second parameter speci-
fies the number of elements supplied in the third parameter. The second and third
parameters are ignored if the value of the action parameter is 1 or 3.

The status value returned by cwavec depends on the value of the action parameter
and in some cases on the value of the action performed. If the value of the action
parameter is 1 or 3, cwavec will return 1 as the status. If the value of the action
parameter is 2,cwavecwill return the value of the PV-WAVE system variable !Err
as the status.

Accessing the Data in PV-WAVE Variables
The wavevars function can be used to access the results generated by PV-WAVE
in a user-written application called with cwavec. wavevars is a C function that
can be invoked from code linked to PV-WAVE to obtain data from PV-WAVE’s
data variable space.

For detailed information on wavevars, see Accessing Data in PV-WAVE
Variables on page 109.

NOTE See also the section Using the Option Programming Interface on page 113.
The Option Programming Interface (OPI) functions allow user-written C code to
access PV-WAVE variables and use other PV-WAVE functionality. OPI provides
greater flexibility and control than wavevars.

Ending the Session with PV-WAVE
If you are in interactive mode (action=1), enter EXIT at the WAVE> prompt to
return to your C application. There is no need to call cwavecwith action=3 to
end the session. However, if the application has accessed PV-WAVE in non-inter-
active mode (action=2), the session must be terminated by a final call to
cwavec with action=3.

Running PV-WAVE from a C Program
To run PV-WAVE from a C program you must first link the C program with PV-
WAVE’s Dynamic Link Library (DLL). The C program may then invoke PV-

Value Meaning

1 Run PV-WAVE interactively.

2 Execute a sequence of PV-WAVE commands and return to the C program.

3 Exit PV-WAVE and return to the C program.

 101

WAVE via the entry point cwavec in the PV-WAVE DLL. The C program must
pass three parameters to the cwavec entry point. A makefile is provided to link
the following example programs. The makefile is available online in the same
directories as the example program files. For more information, see the following
example sections.

NOTE If you have developed previous applications linked with PV-WAVE
Advantage for Windows NT 4.2, see Console Versus Windows Subsystem
Applications on page 119 for information on modifying your makefile.

Example 1: Execute PV-WAVE Commands From C Program

This example shows how to pass a five-element array to PV-WAVE via cwavec,
have PV-WAVE perform some calculations, and produce a plot.

You can find the following listed file in:

%WAVE_DIR%\demo\interapp\win32\cwavec\example.c

#include <stdio.h>

main ()

{

/* Variables for array calculations

 */

 int action, numcmds, istat, cwavec ();

 char *cmds[5];

/*

 * Access PV-WAVE in non-interactive mode

 */

 action = 2;

 numcmds = 5;

/*

 * Send the array of commands to PV-WAVE CL

 * Define the array A

 * Perform matrix multiplication

 * Print contents of B

102 Application Developer’s Guide

 * Display B as a surface

 * Issue a wait command so you can view result

 * Call cwavec

 */

 cmds[0] = ’a = INDGEN(5) * 4’;

 cmds[1] = ’b = a # a’;

 cmds[2] = ’PRINT, b’;

cmds[3] = ’SURFACE, b’;

 cmds[4] = ’WAIT, 3.0’;

 istat = cwavec (action, numcmds, cmds);

/*

 * Since we are done sending commands to

 * PV-WAVE CL, we make a final call to cwavec

 * with action = 3 to wrap up the session.

 */

 action = 3;

 istat = cwavec (action, 0, cmds);

return 0;

}

Compiling and Linking the Example Program

A makefile (called makefile) is provided to compile the example program and
link it to the PV-WAVE DLL. This makefile is in the same directory as the source
file listed above. From a Command window prompt, enter the following command
to run the makefile:

nmake

NOTE If you have developed previous applications linked with PV-WAVE
Advantage for Windows NT 4.2, see Console Versus Windows Subsystem
Applications on page 119 for information on modifying your makefile.

NOTE You must have a supported Windows C compiler on your system for this
makefile to execute properly.

 103

Running the Program

From a Command window prompt, enter the following command to run the exam-
ple program:

example

cwavefor: Calling PV-WAVE from a FORTRAN Program

The cwavefor routine is the FORTRAN application entry point to a PV-WAVE
DLL.

Usage
istat = cwavefor(action, numcmds, ptr, cmdlen)

Parameters

action — Specifies how you wish PV-WAVE to execute. It can have one of the fol-
lowing values:

• action=1 — Run normally. You are interactively prompted for input and exe-
cution continues until you enter the end-of-file character or issue the EXIT
command. At this point, cwavefor returns with a value of 1. Once
cwavefor has been called in this mode, it should not be called again.

• action=2 — Execute the commands in the string array pointed to by ptr. The
return value is the value of the !Error system variable. The cwavefor routine
can be called repeatedly in this mode.

• action=3 — It is necessary to wrap up the session by calling cwavefor one
last time with action=3. This performs any housekeeping required by PV-
WAVE such as closing any open files. The return value for this mode is 1. Once
cwavefor has been called in this mode, it should not be called again.

numcmds — The number of elements supplied in the string array pointed to by ptr.
This argument is ignored if action=3 or if action=1.

ptr — A pointer to an array of strings. If action=2, ptr provides a pointer to the
array of PV-WAVE commands to execute. This argument is ignored if action=3
or if action=l.

cmdlen — The declared length of each string element in the two-dimensional
array.

Returned Value

istat — The returned value depends on the action selected, as explained previously.

104 Application Developer’s Guide

Discussion

You can choose to communicate with PV-WAVE in either an interactive mode or
by sending an array of commands. These methods automatically initialize PV-
WAVE.

The first parameter is the action parameter. The action parameter may have one of
the following the values:

The third parameter is the name of an array of strings containing the PV-WAVE
commands to be executed. The second parameter specifies the number of elements
supplied in the third parameter. The second and third parameters are ignored if the
value of the action parameter is 1 or 3.

The status value returned by cwavefor depends on the value of the action param-
eter and in some cases on the value of the action performed. If the value of the
action parameter is 1 or 3, cwavefor will return 1 as the status. If the value of
the action parameter is 2, cwavefor will return the value of the PV-WAVE sys-
tem variable !Error as the status.

Ending the Session with PV-WAVE

If you are in interactive mode (action=1), enter EXIT at the WAVE> prompt to
return to your FORTRAN application. There is no need to call cwavefor with
action=3 to end the session. However, if the application has accessed PV-WAVE
in non-interactive mode (action=2), the session must be terminated by a final
call to cwavefor with action=3.

Running PV-WAVE from a FORTRAN Program

To run PV-WAVE from a FORTRAN program you must first link the FORTRAN
program with PV-WAVE. The FORTRAN program can then invoke PV-WAVE via
the entry point cwavefor in the PV-WAVE shareable object. The FORTRAN
program must pass four parameters to the cwavefor entry point.

Value Meaning

1 Run PV-WAVE interactively.

2 Execute a sequence of PV-WAVE commands and return to the
FORTRAN program.

3 Exit PV-WAVE and return to the FORTRAN program.

 105

Example 1

In non-interactive mode, valid PV-WAVE commands are passed to cwavefor as
an array of strings. For example, to plot the vector [1, 2, 3, 4, 5] from a FORTRAN
application statically linked to PV-WAVE, the commands would be:

character *50 cmds(5)

.

.

.

cmds(1) = ’a = INDGEN(5) + 1’

cmds(2) = ’plot, a’

action=2

ptr = LOC(cmds)

call cwavefor(action, 2, ptr, 50)

Example 2

This example shows how to pass a five-element array to PV-WAVE via
cwavefor, have PV-WAVE perform some calculations, and produce a plot. You
can find the following listed file in:

%WAVE_DIR%\demo\interapp\win32\cwavefor\examplef.for

NOTE The MS$ATTRIBUTES referenced in this program must appear in every
FORTRAN program that is linked to PV-WAVE. For information on
MS$ATTRIBUTES, refer to the Fortran PowerStation Programmer’s Guide.

C

C Build interface for Microsoft Fortran PowerStation (TM)
C to call the C function ”CWAVEFOR” that is built into
C PV-WAVE

C

 INTERFACE

 INTEGER FUNCTION CWAVEFOR (action, numcmds, ptr, $
cmdlen)

 !MS$ATTRIBUTES C, ALIAS:’_cwavefor’ :: CWAVEFOR

 INTEGER*4 action

 !MS$ATTRIBUTES REFERENCE :: action

 INTEGER*4 numcmds

 !MS$ATTRIBUTES REFERENCE :: numcmds

 INTEGER*4 ptr

 INTEGER*4 cmdlen

 !MS$ATTRIBUTES REFERENCE :: cmdlen

106 Application Developer’s Guide

 END FUNCTION

 END INTERFACE

C

C Variables for array calculations

C

 integer*4 action, numcmds, cmdlen, istat

 character *30 cmds(5)

C

C Declare pointer to pass the CHARACTER array of commands
C to PV-WAVE

C NOTE: The second part of this pointer is not used and
C Microsoft Fortran PowerStation will give a warning about this.

C

 pointer (p,VAR)

C

C Access PV-WAVE CL in non-interactive mode

C

 action = 2

 numcmds = 5

cmdlen = 30

C

C Send the array of commands to PV-WAVE CL

C Define the array A

C Perform matrix multiplication

C Print contents of B

C Display B as a surface

C Issue a wait command so user can view result

C Call cwavefor

C

 cmds(1) = ’a = INDGEN(5) * 4’

 cmds(2) = ’b = a # a’

 cmds(3) = ’PRINT, b’

 cmds(4) = ’SURFACE, b’

 cmds(5) = ’WAIT, 3.0’

C

C Set up the pointer and call PV-WAVE

C

 p=LOC(cmds)

 istat = cwavefor (action, numcmds, p, cmdlen)

C

C Since we are done sending commands to PV-WAVE, we make a final

C call to cwavec with action = 3 to wrap up the session.

 107

C

 action = 3

 istat = cwavefor (action, 0, p, cmdlen)

C

 end

Compiling and Linking the Example Program

NOTE This application requires Microsoft Fortran PowerStation™ 4.0.

Before compiling the application, make sure that you have set the WAVE_DIR and
CPU environment variables, as these are required by the compiler. The value of
WAVE_DIR, of course, depends on the location of the PV-WAVE installation at
your site. For example:

c:> set wave_dir=\vni\wave

c:> set cpu=i386

If necessary, source the Microsoft FORTRAN PowerStation and Microsoft Visual
C/C++ setup file. Doing so will set some important environment variables and
modify your path so that the compiler and linker can be found. The exact command
that you enter will depend on your local configuration. For example:

c:> d:\msdev\bin\fpsvars

c:> d:\msdev\bin\vcvars32

This example, examplef.exe, can be compiled and linked by entering the fol-
lowing commands:

c:> cd %wave_dir%\demo\interapp\win32\cwavefor

c:> fl32 examplef.for %WAVE_DIR%\bin\bin.i386nt\vniwave.lib

Once the executable examplef.exe is built, you can run it by entering the name
of the executable at the MS-DOS prompt.

For example:

c:> examplef

Example 3

In this example, the FORTRAN program passes commands to PV-WAVE to be exe-
cuted and then accesses the results directly (via a C wrapper) from PV-WAVE’s
variable data space using the C function wavevars.

This example uses two functions:

108 Application Developer’s Guide

• wave_from_fort.for — The FORTRAN function that calls PV-WAVE
and accesses PV-WAVE variables directly.

• wavevars_fl.c— A C function (wrapper) that allows the FORTRAN pro-
gram to retrieve and/or modify the values of floating-point arrays in PV-
WAVE’s variable data space. This is accomplished via the wavevars func-
tion, which interacts directly with PV-WAVE’s variable data space. (Direct
interaction between a FORTRAN program and wavevars does not work
because FORTRAN lacks the C language’s ability to access a common data
area by address.)

The C and FORTRAN code described in this example is available online in the
directory:

%WAVE_DIR%\demo\interapp\win32\cwavefor

The FORTRAN program must be compiled and linked with PV-WAVE and the C
wrapper routine to produce a single executable program, as explained in the next
section. It is because your program is linked with PV-WAVE as a single executable
that your program can share PV-WAVE variables.

Compiling and Linking the Example Program

NOTE This application requires Microsoft Fortran PowerStation™ 4.0. It also
requires a C compiler. The file wavevars_fl.c was tested with Microsoft
Visual C ™ or Visual C++ ™ 4.0 and modifications may be needed if you are using
a different C compiler.

This example wave_from_fort.exe can be compiled and linked by entering
the following commands:

c:> set include=%INCLUDE%;%WAVE_DIR%\util\variables

c:> cl /c wavevars_fl.c

c:> fl32 wave_from_fort.for wavevars_fl.obj

%WAVE_DIR%\bin\bin.i386nt\vniwave.lib

Once the executable wave_from_fort.exe is built, you can run it by entering
the name of the executable at the MS-DOS prompt. For example:

c:> wave_from_fort

 109

Running the Program

After the program is compiled and linked, it can be run by entering the name of the
resulting executable file. For example if the executable is called
wave_from_fort, enter:

wave_from_fort

The output from this example is shown in Figure 2-1 on page 42.

Accessing Data in PV-WAVE Variables
You can access PV-WAVE variables from a dynamically linked C program by call-
ing the function wavevars. Once commands have been sent to PV-WAVE from
an external application, you can use the wavevars function to access the results
in the external application. wavevars is a C function that can be invoked from
code linked to PV-WAVE with either cwavec or LINKNLOAD.

wavevars obtains data directly from PV-WAVE’s variable data space.

NOTE See also the section Using the Option Programming Interface on page 113.
The Option Programming Interface (OPI) functions allow user-written C code to
access PV-WAVE variables and use other PV-WAVE functionality. OPI provides
greater flexibility and control than wavevars.

Usage
int argc;

char **argv;

WaveVariable *argp;

result = wavevars(&argc, &argv, &argp);

Parameters

argc — Set to the number of variables returned.

argv — Set to be an array of strings, sorted in lexicographic order, corresponding
to variable names available at the current scope level of PV-WAVE.

argp — A type WaveVariable array of descriptors defining the type, structure,
and dimension of the variables as well as providing a pointer to their actual data.
The WaveVariable structure is described in the Discussion section that follows.

110 Application Developer’s Guide

Returned Value
result — A C int value which is nonzero if the routine executed successfully, and
zero if an error (such as running out of memory) occurred.

Discussion
PV-WAVE variables can be accessed directly from a C function by calling the C
function wavevars which is dynamically linked to PV-WAVE. The C function
passes three parameters to the wavevars entry point.

The first parameter is the address of an integer variable into which wavevarswill
return the number of currently-defined PV-WAVE variables (including system vari-
ables). The second parameter is the address of an array of pointers to strings (i.e.,
char**) into which wavevars will return the names of currently-defined PV-
WAVE variables. The third parameter is the address of an array of pointers to the
C structure WaveVariable into which wavevars will return information
regarding the type, structure, dimension, and data of each PV-WAVE variable
(including a pointer to the current value of the variable).

WaveVariable is defined as follows in:

%WAVE_DIR%\util\variables\wavevars.h.

This header file must be included in any C function that calls wavevars.

typedef struct WaveVariable {

int type;

int read_only;

int numdims;

int dims[8];

int numelems;

void **data;

char name[MAXIDLEN + 1];

} WaveVariable;

CAUTION Although wavevars returns pointers to the data associated with PV-
WAVE’s variables, keep in mind that the data pointer associated with a given vari-
able can change after execution of certain PV-WAVE system commands. It’s best
to call wavevars immediately before it is needed to obtain information from the
external program.

The wavevars function allocates space to store the information it returns to the
caller. When the caller no longer needs the information returned by wavevars,
then the free_wavevars() function should be called to free the space. The

 111

arguments to free_wavevars() should be identical to those used in the call to
wavevars such as:

result = free_wavevars(&argc, &argv, &argp);

and argc must still contain the number of variables returned by the wavevars
call.

The WaveVariable structure’s fields are:

int type — The type field indicates the type of the variable. Valid PV-WAVE
variable types, together with their C equivalents, are defined in wavevars.h as
follows:

TYP_BYTE char;

TYP_INT short;

TYP_LONG long;

TYP_FLOAT float;

TYP_DOUBLE double;

TYP_COMPLEX struct { float r, i; } COMPLEX;

TYP_STRING char *;

In PV-WAVE, a structure is a collection of data where each field (tag) has a name.
The C structure WaveVariable describes a PV-WAVE structure with a type of
TYP_STRUCT, where each element of the structure is contained in a list of
WaveVariable structures pointed to by the data field, which is described later
in this section.

The constant TYP_ARRAY will be bitwise or-ed into the type field if the variable
is in fact an array.

int read_only — Many PV-WAVE variables are read-only, and thus if this
field is nonzero, it is not permissible to alter the actual variable data. This is often
the case with system variables.

int numdims — PV-WAVE variables may be of dimension zero (scalar) to
eight. The field numdims indicates the dimensionality of the variable.

int dims[8]— Indicates the size of each dimension of a variable if it is of type
array.

int numelems — Corresponds to the total number of data values which are
addressable from the data pointer.

void **data— Corresponds to the address of the actual variable data. The data
is always stored as a one-dimensional C array regardless of the dimensionality of
the PV-WAVE variable.

112 Application Developer’s Guide

char name[MAXIDLEN + 1]— Only used when the variable being described
is of type structure and represents the structure or tag field name (depending on
context).

To access a specific PV-WAVE variable you must search the array of variable
names returned by wavevars to find the index associated with that variable. Then
use the index to access the correct PV-WAVE variable from the WaveVariable
array. The type field inWaveVariable is used to determine a variable’s type. To
access the data associated with a PV-WAVE variable it is necessary to use the data
pointer and cast it to the correct type. It is then possible to read and/or modify the
actual data value(s).

Using wavevars to Retrieve Data from PV-WAVE
An example C program demonstrating the use of wavevars can be found online.
You can print the program or view it online using a text editor. The example pro-
gram is in the file:

%WAVE_DIR%\demo\interapp\win32\wavevars\example.c

The C program retrieves a list of all PV-WAVE variables and prints out their con-
tents. The program demonstrates several important concepts.

• The data pointer must be cast to appropriate type.

• The data is always stored as a flat one-dimensional array.

• PV-WAVE structures are stored recursively.

Building the DLL File

The makefile (called makefile) creates the DLL file used by LINKNLOAD to
link the C function to PV-WAVE at runtime. This makefile is in the same directory
as the source file example.c. At an MS-DOS Command window prompt, enter
the following command to build the DLL:

nmake

NOTE You must have a supported Windows C compiler on your system for this
makefile to execute properly.

Accessing the External Function with LINKNLOAD

The following PV-WAVE procedure runs the example C program by calling
LINKNLOAD. For detailed information on LINKNLOAD, see the Using
LINKNLOAD to Call External Programs on page 96. This procedure is available
online in the file:

 113

%WAVE_DIR%\demo\interapp\win32\wavevars\lnl_example.pro

PRO variable

ln = LINKNLOAD(’example.dll’,’printallvars’)

INFO, ln

END

To run this procedure, start PV-WAVE and type the following command at the
WAVE> prompt:

WAVE> lnl_example

The output of this PV-WAVE procedure prints a listing of all currently defined PV-
WAVE variables and their values. Finally, the INFO command prints the return
value of the LINKNLOAD call.

Using the Option Programming Interface

The Option Programming Interface (OPI), a C-callable or FORTRAN-callable pro-
gramming interface, was developed to provide greater flexibility and control than
wavevars. OPI differs from wavevars in the following ways:

• Uses less memory than wavevars

• Can obtain information about a single PV-WAVE variable at a time.

• Can obtain a subset of the information normally returned by wavevars.

• Can create new PV-WAVE variables.

For detailed information on OPI, see the PV-WAVE Programmer’s Guide.

NOTE To use OPI effectively with C programs, you should be a C programmer,
understand the difference between call-by-reference and call-by-value, and be able
to use pointers and the C malloc() function.

Loading PV-WAVE Dynamically into an Application

Rather than statically linking to PV-WAVE DLLs (using LIB files) when you com-
pile, you can instead dynamically link applications to the DLLs at run time when
you use cwavec(). To do this, use the LoadLibrary() and GetProcAd-
dress() API calls to load the libraries and call into them at run time.

To accomplish these API calls, use the routine LoadWave(), located in the
directory:

<wave_dir>\demo\interapp\win32\loadwave

114 Application Developer’s Guide

The LoadWave() function loads PV-WAVE DLLs into your application using
LoadLibrary() and callsGetProcAddress() to determine entry points for
cwavec() and all of the OPI functions.

LoadWave() uses the information in the Windows Registry to find where you
have installed PV-WAVE and uses this information to find the DLLs. Because it
uses the Registry, LoadWave() will make your application more portable. Plus,
since the DLLs are loaded and the entry points found at run time, your application
will not be linked to any specific version of PV-WAVE; rather it will use whatever
version is available.

In the directory shown above, you will also find an sample application that uses
Microsoft Foundation Classes (MFC) to connect a PV-WAVE graphics window to
a Windows application.

Special Considerations for Noninteractive Applications
If you are writing a noninteractive application — one for which no input is required
at the PV-WAVE prompt — then you may need to build some special handling into
your code for any nonblocking PV-WAVE widgets. You may also need to make
special arrangements for graphic-window resizing.

Using Nonblocking PV-WAVE Widgets

When PV-WAVE's input is not coming from an interactive terminal, then the non-
blocking Widget event loop (WwLoop,/NoBlock, for example) may not behave
as expected. This event loop is normally serviced as PV-WAVE “watches” the key-
board. Thus, when you do not have an interactive terminal, the event loop is not
serviced.

Some examples of noninteractive applications include:

• Running commands from within a PV-WAVE procedure or batch file using @
or .RUN)

• Sending commands to PV-WAVE via a pipe using wavecmd()

• Running PV-WAVE in batch mode or redirecting standard input

• Using cwavec() or cwavefor() (see the Note, below)

In these situations, it becomes the programmer’s responsibility to service the event
loop. If you are running commands in a procedure file, then this can be as simple
as exiting back to the command prompt.

 115

If you are running PV-WAVE as a background process, however, or in some mode
where you need a nonblocking event loop but do not have an interactive terminal,
then you will need call WtProcessEvent periodically to service the event loop.
To process all pending events, you call this function using the /Drain keyword .

Example

Say you have the following in a procedure file:

NAVIGATOR

; A non-blocking Widget application

WHILE (WtProcessEvent(/Drain) NE 1) DO BEGIN $

 PRINT, ’Still alive’ & $

 WAIT, 0.1

PRINT, ’Exiting’

EXIT

When you execute this procedure at the PV-WAVE prompt, the WHILE loop causes
WtProcessEvent to be called until the widget application is exited. Of course,
in a real case, you would do some other processing rather than just PRINT and
WAIT, but the point is that you need to call WtProcessEvent periodically and
check its return status (so you know when the Widget application is finished).

NOTE When you use cwavec() and cwavefor(), the normal behavior for
WwLoop, /NoBlock is to ignore the keyword and actually block. So if you call
cwavec() to execute a nonblocking Widget, PV-WAVE will service its own event
loop until the Widget exits. If you wish to have the event loop nonblocking, then
you must call WtProcessEvent periodically to process the events and use
WwLoop, NoBlock=2 to force the nonblocking behavior.

Window Resizing

PV-WAVE will not automatically recognize resizing of graphic windows when it is
not being run interactively (for example, using wavecmd() or cwavec()). To
notify PV-WAVE of window resizing use:

WSET, winid

This command has the effect of updating the !D system variable. See WSET for
more information.

116 Application Developer’s Guide

Using Dynamic Data Exchange (DDE)
This section assumes that you are already familiar with DDE, its terminology, and
use. The terms client (destination application), server (source application), con-
versation, service, topic, item, data, and manual link used in this section are
standard terms related to DDE. If you are not familiar with DDE, refer to a
Microsoft Windows user’s guide.

Overview of DDE Support in PV-WAVE

DDE allows communication between applications running in the Windows envi-
ronment. Using DDE, you can establish a conversation between PV-WAVE and
another application that supports DDE. Currently, you can establish PV-WAVE as
a server application that is called by a client application; however, you cannot
establish PV-WAVE as a client.

In general, you can perform the following tasks using DDE with PV-WAVE:

• Setting variables — The client application can set variables in PV-WAVE to
specified values. The variable must already exist in PV-WAVE before it can be
set.

• Querying variables — The client application requests that PV-WAVE send it
the value of a specified variable.

• Executing commands — Any PV-WAVE command can be executed from the
client application. For example, after an application processes data, the data is
sent to PV-WAVE followed by graphics commands to display it.

Initializing PV-WAVE as a DDE Server
You must start the PV-WAVE DDE server before you can use DDE to exchange
data with other applications. All DDE communication is then passed through the
DDE callback function.

To start the PV-WAVE DDE server, enter the following command

wavedde

or click on the PV-WAVE DDE Server icon in the PV-WAVE Program Group window
on Windows NT, or use the Start button from Windows 95.

Textual output and messages are displayed in the shell window from which the PV-
WAVE DDE Server was launched. If the server was launched from an icon or the
Start button, then a separate console window is created on the desktop to display
the output.

 117

Which DDE Topics Are Available?
The PV-WAVE server’s service name is WAVE. The PV-WAVE server responds to
the topics CONNECT, DISCONNECT, EXECUTE, PUT, and GET. Each of these
topics is discussed in the following sections.

CONNECT

Establishes communication from the client to the PV-WAVE server.

DISCONNECT

Closes communication between the client application and the PV-WAVE DDE
server.

EXECUTE

The EXECUTE topic lets the client application send a string containing a PV-
WAVE command to be executed. The string cannot start with a dollar ($) or period
(.) character. The EXECUTE topic does not have an item associated with it.

PUT

Use the PUT topic when you want to modify the value of a variable in PV-WAVE.
The variable must already exist in PV-WAVE and be of the expected size or an error
results.

The PUT topic’s item is always a string containing the name of the variable being
set. The item’s data is a CF_TEXT formatted string.

GET

Use the GET topic when you want to query the value of variable in PV-WAVE. The
variable must already exist in PV-WAVE or an error results.

The GET topic’s item is always a string containing the name of the variable being
queried. The GET topic returns data representing the result of the query, and this
data is “poked” into the client application.

Which Data Formats Are Available?

The PV-WAVE DDE server supports only the CF_TEXT data format. Each text
record ends with a CR-LF combination, and a NULL character signals the end of
the data.

118 Application Developer’s Guide

Communicating with a Windows Application Written in C
This section discusses an example Windows application written in C. The applica-
tion allows the user to interact directly with PV-WAVE. More specifically, the
application is a simple client designed to initiate DDE conversations with PV-
WAVE that:

• execute PV-WAVE commands

• set PV-WAVE variables

• query PV-WAVE variables

Each conversation is established manually, which means that PV-WAVE only sup-
plies data to the C application when the C application requests it.

The Example C Program

The example C program is provided online in the file:

%WAVE_DIR%\demo\interapp\win32\dde\ddetest.c

The C application executes PV-WAVE commands, sets the values of existing vari-
ables, and queries the values of existing variables. It uses the topics GET, PUT, and
EXECUTE.

A makefile is available in the same directory as the C file ddetest.c. To compile
this application, enter the following command from an MS-DOS Command win-
dow prompt:
nmake

NOTE You must have a supported Windows C compiler on your system for this
makefile to execute properly.

Running the Example Application

To run the application, you must first start the PV-WAVE DDE server as explained
previously.

To start the application, enter the following command at the operating system
prompt:

ddetest

 119

The following dialog box appears on your screen:

Figure 3-1 The dialog box for the client application. This simple application uses DDE to
communicate with PV-WAVE.

To execute a PV-WAVE from the C application, type the command in the text field
next to the Execute button, and then click Execute.

To create a variable in PV-WAVE, enter an expression in the text field next to the
Execute button and click Execute. For example, to create a four element array vari-
able called numbers, you could enter:

numbers = [1,2,3,4]

and then click Execute.

To change the value of this variable, type the variable’s name in the Variable text
field, then enter a new value in the Query/Set text field and click Set. To see the
value of a variable, enter its name in the Variable text field and click Query.

Console Versus Windows Subsystem Applications
You may use PV-WAVE within your application in one of two ways:

• The “PV-WAVE Console” (wave.exe)

• The “PV-WAVE Home Window” (wavewin2.exe).

The wave.exe executable is built as a console-mode application, whereas
wavewin2.exe is a Windows application.

The libraries provided in the PV-WAVE DLLs are built as Windows Subsystems
and thus will support either type of application you wish to write (using
cwavec(), for example).

120 Application Developer’s Guide

PV-Wave As a Console Application

As a console application, the wave.exe command supports standard I/O redirec-
tion and can be used in batch files. Pipes for standard I/O are also supported, and
you can run PV-WAVE over a network (using telnet or remote login, for example)
for non-graphical applications.

When you run wave.exe from either from the Program Manager or from a Win-
dows 95 Explorer icon, a console window is automatically created to facilitate I/O.

PV-Wave As a Home Window Application

The PV-WAVE “Home Window” (wavewin2.exe) is a Windows application.
Therefore, it always runs in its own window. This allows more flexibility in com-
municating to other applications — the Clipboard, for example. However, this type
of application does not support standard I/O redirection and cannot be run from a
batch file or across a network.

Sample Applications are Available

For sample programs and makefiles demonstrating both console- or Windows-
subsystem applications, look in the directory:

(Windows) <wavedir>\demo\interapp\win32

Where <wavedir> is the main PV-WAVE directory.

Additional Documentation

Consult the Win32 Tool User’s Guide and the Win32 Programmer’s Reference if
you have any question about the linker, changes to the linker flags, or the initial
application entry points.

121

CHAPTER

4

Building VDA Tools
Read this chapter if you intend to develop VDA Tools or if you wish to customize
or modify existing VDA Tools.

What Are VDA Tools?
VDA Tools represent a new paradigm in PV-WAVE application development.

On the surface, a VDA Tool is a PV-WAVE application with a Motif or Microsoft
Windows Graphical User Interface (GUI) (see Figure 4-1). VDA Tools resemble
WAVE Widgets applications; however, VDA Tools provide a level of flexibility and
independence that distinguishes them from typical WAVE Widgets applications.

This section lists the main features of VDA Tools. Subsequent sections describe
VDA Tools on a more technical level and discuss how to build VDA Tools. The
final section describes how you can create a Navigator interface for one or more
VDA Tools.

122 Application Developer’s Guide

Figure 4-1 The VDA Tool WzSurface displays 3D surface data. Menu commands, button
bar functions, and other controls let you manipulate, annotate, and print the view. Multiple
instances of this VDA Tool can be run at once. Each instance shares the same source code,
yet is independent of other instances.

Multiple Instances from Same Source Code

Consider the VDA Tool WzPlot. The source code resides in one file:
wzplot.pro. As with any VDA Tool, you can call WzPlot as many times as you
wish. Each time you call WzPlot, a new WzPlot window is created on your screen.
Each of these windows is a separate instance of this VDA Tool. Each instance can
display a different variable. In one instance, data is plotted in red, in another, data
is green. One instance might have a legend, and another might have callout lines
with associated text used to highlight a portion of the data.

Each instance of a VDA Tool is completely independent from all other instances of
that same tool, even though they share the same source code. The VDA Tools Man-
ager, described later, enables this VDA Tool independence. As a VDA Tool
developer, you will use VDA Tools Manager Application Programming Interface
(API) calls in your VDA Tool code to communicate with the Tools Manager.

 123

Intertool Communication

Although multiple instances of VDA Tools are independent, the Tools Manager
permits communication between tools. For example, you can export a variable
from one tool to another or cut and paste graphical elements — rectangles, lines,
legends, axes, bitmaps, and text — from one tool to another. For information on
graphical elements, see Manipulating Graphical Elements on page 136.

In addition, data selection information is shared among VDA Tools. In other words,
the selected portion of a variable is displayed as selected in every VDA Tool cur-
rently displaying that variable.

Called from the Command-line

Each VDA Tool can be run directly from the PV-WAVE command line. In addition,
VDA Tools can be run directly from an interface called a Navigator.

Non-blocking

VDA Tools do not block the PV-WAVE command line, nor do they block one
another.

Code Generation

If you are developing PV-WAVE applications, you can use VDA Tools to generate
PV-WAVE code. The code generation feature allows the user to write the PV-
WAVE commands used to produce a VDA Tool result (plot data, import data, etc.)
to a file.

Easy to Save and Restore

A save function is provided to let you save the entire contents of a VDA Tool,
which you can restore later. You can also save a template. A template is a “blank”
VDA Tool. It includes the entire VDA Tool except for the data. In other words, you
can restore a VDA Tool view, all of the color setups, annotations, and other modi-
fications you have made, without restoring the data.

Portable

VDA Tools developed for an X Windows environment (under UNIX or OpenVMS)
are completely portable to Microsoft Windows. Likewise, VDA Tools developed

124 Application Developer’s Guide

under Windows can be run in an X Windows environment (under UNIX or
OpenVMS).

Native Look and Feel

In an X Windows environment, VDA Tools adopt the Motif interface conventions.
Under Microsoft Windows, VDA Tools look and behave just like typical Windows
applications.

Easy to Build and Customize

PV-WAVE comes with a set of prewritten VDA Tools. By convention, the com-
mands used to start these Tools all begin with the letters “Wz”, such as WzPlot and
WzSurface. You can customize any of these existing VDA Tools, or build your own
VDA Tools. You are free to use the existing VDA Tool routines as templates and
examples.

Online Help

Each VDA Tool provided with PV-WAVE comes with complete online Help. Select
the Help menu on the right-hand side of the VDA Tool menu bar.

A Technical Perspective on VDA Tools
The previous section presented a general overview of VDA Tools. The next few
sections discuss VDA Tools on a more technical level. These sections are the start-
ing point for anyone who plans to design, build, or customize VDA Tools. The next
few sections cover the following topics:

• VDA Tool Ingredients

• VDA Tools Manager

• VDA Tools Utilities

• Navigator

Figure 4-2 shows the overall architecture of a VDA Tool.

 125

Figure 4-2 VDA Tool architecture.

Figure 4-3 shows the directories in which the predefined VDA Tool (Wz) routines,
VDA Tool Manager (Tm) routines, VDA Tool Utilities (Wo) routines, and their
resource files are located.

VDA Tools (Wz)

VDA

WAVE Widgets and Wave Toolkit

Objects (Wo)

PV-WAVE

VDA Tools
Manager
(Tm)

(Ww and Wt)

Navigator

126 Application Developer’s Guide

Figure 4-3 The directory structure for the VDA Tool routines and the related resource files.

What is the VDA Tools Manager?
The VDA Tools Manager is a software layer that keeps track of VDA Tools, assists
in saving and restoring VDA Tools, and facilitates the communication between
VDA Tools.

The Tools Manager contains a data structure that stores the following VDA Tool
information:

• Unique names of VDA Tools — The unique name is the key to the data struc-
ture. Tools Manager API calls allow you to update and modify this structure
based on the unique name. The function TmGetUniqueToolName is used to
generate a unique name for each VDA Tool instance.

• Methods — A method is a program that is executed in response to a trigger in
a VDA Tool, such as a menu or button selection or mouse click. Normally, a
VDA Tool will have several methods defined for it.

• Graphical Elements — Graphical elements (GRAELS) are predefined graph-
ics routines used by VDA Tools. Graphical elements are primarily used for
annotation — lines, rectangles, legends, text — but also include axes.

Main PV-WAVE Directory

lib xres

american other_lang

*.ad *.ads

vdatools

wz*.pro
wo*.pro
tm*.pro vdatools

 127

• Variables — The Tools Manager keeps track of which variables are associated
with specific VDA Tools. The Tools Manager layer allows variables to be
passed back and forth between different VDA Tools.

• Attributes and values — Anything that is tracked by the Tools Manager can
have attributes assigned to it. For example, color is an attribute that might be
assigned to a variety of items, such as lines, text, variables, and axes. The
attribute’s value determines how the item is realized in the VDA Tool. For
example, the thickness attribute for a line might have a value of 2 pixels.

• Save/Restore Information — The information needed to save and restore a
VDA Tool is always maintained by the Tools Manager.

The Tools Manager relies on a central data structure that maintains necessary infor-
mation about each instance of a VDA Tool. The VDA Tools Manager API routines,
which all begin with “Tm”, allow VDA Tools to update this structure and retrieve
information from it.

The VDA Tools Manager enables VDA Tool independence. As a VDA Tool devel-
oper, you will use Tools Manager API calls in your VDA Tool code to
communicate with the Tools Manager. Figure 4-4 shows how multiple VDA Tool
instances share the same source code, which communicates with the Tools Man-
ager core.

128 Application Developer’s Guide

Figure 4-4 A VDA Tool, such as WzPlot, is a GUI application that consists of graphical ele-
ments, variables, methods, and attributes. All instances of a VDA Tool share the same code.
The Tools Manager keeps track of the specific characteristics of each instance of a VDA
Tool. The VDA Tool source program communicates with the Tools Manager via the Tools
Manager API (Tm* routines).

VDA Tools Manager

VDA
WzPlot_2

VDA
WzPlot_1

VDA
WzPlot_0

WzPlot_0
graphical elements
variables
attributes
methods
save
restore

WzPlot_2
graphical elements
variables
attributes
methods
save
restore

WzPlot_1
graphical elements
variables
attributes
methods
save
restore

WzPlot Tool Source
Code: wzplot.pro

PV-WAVE Commands
WAVE Widgets (Ww*)
Tools Manager API (Tm*)
VDA Utilities (Wo*)

 129

The Tools Manager API

The routines used for creating and manipulating VDA Tools are listed in the fol-
lowing table.
Functional Listing of Tools Manager General Routines

Types of Routines Routine Name

General Routines TmDynamicDisplay
TmEnumerateItems
TmEnumerateToolNames
TmGetMessage
TmGetTop

TmGetUniqueToolName
TmInit

TmRegister

TmUnregister

Attribute Routines TmEnumerateAttributes
TmGetAttribute
TmSetAttribute

Method Routines TmEnumerateMethods
TmExecuteMethod
TmGetMethod
TmSetMethod

Variable Routines TmAddVar
TmDelVar
TmDynamicShowVars
TmEnumerateVars
TmGetVarMainName

Save/Restore Routines TmRestoreTemplate
TmRestoreTools
TmSaveTools

Intertool Communication Routines TmAddSelectedVars
TmDeselectVars
TmEnumerateSelectedVars
TmExport
TmExportSelection

130 Application Developer’s Guide

VDA Tool Ingredients
In general, a VDA Tool is a collection of the following parts, which are managed
by the VDA Tools Manager:

• Unique name

• Methods

• Variables

• Graphical elements

• Attributes

• User interface

PV-WAVE underlies the entire VDA Tool architecture. All VDA Tool code is writ-
ten in PV-WAVE.

VDA Tools Require Unique Names

Once initialized with the TmInit command, the Tools Manager data structure is
ready to keep track of VDA Tools. The key to this tracking system is the VDA Tool
name. Each VDA Tool must be registered with the Tools Manager with a unique
name. A unique name for a VDA Tool is obtained via a call to TmGetUniqueTool-

Code Generation Routines TmCodeGen
TmEndCodeGen

TmStartCodeGen

List Routines TmList
TmListAppend
TmListClear
TmListDelete
TmListDestroy
TmListExtend
TmListGetMethod
TmListInsert
TmListReplace
TmListRetrieve
TmListSetMethod

Functional Listing of Tools Manager General Routines (Continued)

Types of Routines Routine Name

 131

Names. The TmRegister function is then used to register the unique name with the
Tools Manager.

Each time a VDA Tool is called, it is registered with the Tools Manager with a
unique name. For example, the first instance of WzScatterPlot might be registered
as WzScatterPlot_0, and the second instance might be WzScatterPlot_1.

You can always determine the names of all VDA Tool instances currently regis-
tered with the tools manager with the TmEnumerateToolNames function. The
following example command shows that three separate instances of WzScatterPlot
are currently registered with the Tools Manager.

PRINT, TmEnumerateToolNames()

WzScatterPlot_0, WzScatterPlot_1, WzScatterPlot_2

Methods Drive VDA Tools

A method is a procedure that is executed in response to a trigger in a VDA Tool,
such as a menu or button selection or mouse click. Normally, a VDA Tool will have
several methods defined for it.

When a method is executed, the Tools Manager helps direct the subsequent action.
The Tools Manager keeps track of the unique instance of the VDA Tool to apply
the method to, the name of the program to execute, and any data associated with
that specific tool that the method procedure needs.

Register the Method

First, the method name and method procedure name must be registered with the
VDA Tools Manager (see Figure 4-5). This is usually done somewhere in the main
VDA Tool procedure. The TmSetMethod function accomplishes this:

TmSetMethod, tool_name, ’TM_DISPLAY’, ’WzPlotDisplay’

where tool_name is the unique name of a VDA Tool, TM_DISPLAY is the name
of the method, and WzPlotDisplay is the name of the method procedure (the pro-
cedure that is executed when the method is triggered).

Execute the Method

Next, a method is executed by a TmExecuteMethod call. The VDA Tool program
determines when a method is executed — this is up to the VDA Tools developer.
Some predefined triggers are built into the VDA Utilities routines WoMenuBar and
WoButtonBox.

TmExecuteMethod, tool_name, ’TM_DISPLAY’

132 Application Developer’s Guide

Events that can trigger methods include: selecting a menu item, selecting a button
from the tool bar, clicking a mouse button when the pointer is in the drawing area,
exposing a window, and, potentially, many others. Figure 4-5 illustrates the
sequence of actions that lead to the execution of a method.

Figure 4-5 Executing a method requires the following basic sequence of actions: (1) The
TM_VIEWATTR method is registered with the method procedure WzPlotViewAttr in the VDA
Tool source code. (2) The View Attributes menu item is selected. (3) This triggers a
TmExecuteMethod command. (4) The method procedure, WzPlotViewAttr, is executed. (5)
The method procedure displays the View Attributes Dialog Box.

Standard Methods
The following table lists and describes the set of “standard” VDA Tool methods.
These method names are considered to be standard because they are called by
default by some of the VDA Utilities (Wo) routines. Technically, you can change
the names of the methods to anything you like, but you might also need to modify
the callbacks for some of the VDA Utilities routines as well.

View Attributes Dialog Box

WzPlotViewAttr

TmSetMethod,unique_name, ’TM_VIEWATTR’, $
’WzPlotViewAttr’

TmExecuteMethod, Toolname, $
‘TM_VIEWATTR’

(2)

(1)

(3)

(4) (5)

View Attributes

 133

NOTE As a VDA Tools developer, you can create any methods you need to
develop the functionality for a specific VDA Tool. For instance, if you are devel-
oping a table tool, you might not need to use the TM_DISPLAY method at all, and
you would need to develop new methods designed to work with tables.

Standard VDA Tool Methods

Method Action Called by

TM_DISPLAY Performs the graphics
commands to display data.

Menu commands (redraw),
action area callbacks,
graphical element routines
(redraw), window manager
event (expose a window).

TM_CODEGEN Writes the PV-WAVE code
used to display the graphics to
a file.

Menu command callback.

TM_CONVERT Performs coordinate system
conversions for copy and paste
operations between windows
with different coordinate
systems or aspect ratios.

Data export, resize, and
graphical element routines.

TM_VIEWATTRIBUTES Creates a user interface (dialog
box) for setting view attributes.

Menu command callbacks
and graphical element
routines.

TM_DATA_EXPORT Creates a user interface (dialog
box) for exporting a variable
from the VDA Tool.

Menu command callback.

TM_DATA_SELECTION Verifies that data was selected.
This method is triggered when
a data selection is completed.
You can select data by clicking
on it or drawing a rectangle
around it. Calls
TmDynamicDisplay.

Menu command and button
bar callbacks, graphical
element routines, from
drawing area callback.

TM_VARATTRIBUTES Creates a user interface (dialog
box) for setting variable
attributes.

Menu command callbacks
and graphical element
routines.

TM_DATA_IMPORT Checks the validity of data
being imported into a VDA
Tool.

The target VDA Tool when
data is exported to it.

134 Application Developer’s Guide

Manipulating Variables and Other Items
Deciding which items need to be defined for a VDA Tool, along with the attributes
of each item, is one of the challenges of VDA Tool development.

Items can include a wide variety of things that you want to put in a VDA Tool.
Some examples of items are:
• variables
• help files
• drawing area
• file names

Each item can have characteristics, called attributes, associated with it.

Different VDA Tools might have very different sets of items, depending on the pur-
pose of the VDA Tool. Once an item is defined and registered with the Tools
Manager, the Tools Manager can always keep track of that item’s characteristics for
a specific VDA Tool instance.

For example, if you are developing a surface plotting tool, you might want to pro-
vide a way for the user to change the rotation of the axes. Note that whenever the
surface tool draws a surface plot, it needs to be able to extract the information from
the Tools Manager that is needed to render the orientation (that is, if anything but
the default rotation is to be used).

The following calls to the TmSetAttribute function assign the attributes
X_ROTATION and Z_ROTATION to the global item for the tool, which is called
TM. These attributes are assigned the default values of 30.

NOTE These calls can be placed in the main procedure of the VDA Tool to set
defaults, and they can be in the procedure used to create a View Attributes dialog
box.

tmp=TmSetAttribute(tool_name, ’TM’, ’X_ROTATION’, 30)

tmp=TmSetAttribute(tool_name, ’TM’, ’Z_ROTATION’, 30)

With these orientation items registered in the Tools Manager for the item TM and
unique Tool instance tool_name, the procedure associated with a method, such

TM_DESTROY Allows clean-up of anything
created during the execution of
the VDA Tool. For instance,
temporary variables can be
removed.

TmUnregister: before the
top-level shell of the VDA
Tool is closed.

Standard VDA Tool Methods (Continued)

Method Action Called by

 135

as the display method, can get the settings it needs to display the surface correctly.
For example, the procedure called by the TM_DISPLAY method for this VDA
Tool might contain the following calls:

XRot=TmGetAttribute(tool_name, ’TM’, ’X_ROTATION’)

ZRot=TmGetAttribute(tool_name, ’TM’, ’Z_ROTATION’)

Then, the returned values from these calls can be used directly in the SURFACE
procedure to draw the surface:

SURFACE, var1, Ax=XRot, Az=ZRot

The following table summarizes the “standard” items and their attributes:

Standard VDA Tool Items

Item Attribute Purpose Called by

TM_HELP ON_WINDOW Access a Help topic Help callback (on
window)

TM_HELP HELP_FILE Access a Help topic Help callback

TM_HELP ON_VERSION Access a Help topic Help callback
(version)

TM_WINDOWID 0 (Window 0) PV-WAVE Window ID Grael routines

TM_DRAWING 0 (Window 0) WAVE Widgets
Drawing Area handle

Tools Manager
handlers for the
Drawing Area

TM IMPORT Accept or do not
accept imported
variables

View Attributes
dialog box

TM REPLACEVAR Replace existing
variables with
imported variables, or
add imported variables
to the VDA Tool.

View Attributes
dialog box

TM XRANGE Set the range of the
x-axis graphical
element.

View Attributes
dialog box

TM YRANGE Set the range of the
y-axis graphical
element.

View Attributes
dialog box

TM SELECTED_DATA Sets the selection
mode: rectangular area
or single point.

Data selection
button or menu
callback.

136 Application Developer’s Guide

The important things to remember about variables, attributes, and values are:

• You must register variables (or other items) and their attributes and values with
the Tools Manager.

• You can use Tools Manager API calls to modify or extract item attributes and
values when they are needed.

• You can define any items you need to provide specific functionality in a VDA
Tool.

• Variables and other items have attributes and values associated with them,
which you also define.

• Each unique VDA Tool instance has its own set of variables or other items
associated with it.

Manipulating Graphical Elements

Graphical elements (also referred to as Graels) are predefined graphics routines
used by VDA Tools. These routines allow you to easily add, configure, and remove
graphical elements in a VDA Tool display area. The graphical elements are equiv-
alent to items associated with specific VDA Tool instances. Graphical elements
allow the VDA Tool user to draw the following graphics and text items on the fly:

• Rectangle

• Line

• Legend

• Text

• Axis

• Bitmap

This standard set of Graels is accessible from the standard menu bar and button bar
that is provided with the VDA Utility routines WoMenuBar and WoButtonBar.

TM HICOLOR Sets the color used to
highlight selected data
(not graphical
elements)

View Attributes
dialog box

TM STYLE Sets the linestyle of
plotted data.

Variable Attributes
dialog box

Standard VDA Tool Items

Item Attribute Purpose Called by

 137

NOTE For the most part, VDA Tools developers do not need to be concerned with
how graphical elements are created. The prewritten graphical element routines
handle all aspects of drawing these graphics objects — positioning, scaling, coor-
dinate conversion, as well as the actual drawing. Functions on the standard
graphical menu and button bar have working callbacks that call the graphical ele-
ment routines directly. When the user adds a graphical element to a VDA Tool plot,
it is automatically registered as an item with the Tools Manager.

To obtain the names of the graphical elements that are currently registered with a
VDA Tool, use the TmEnumerateGraels function.

items = TmEnumerateGraels(tool_name)

where tool_name is the unique name of a VDA Tool instance. This function returns
an array of strings containing the names of the items associated with that particular
VDA Tool. Graels are returned in the following format:

graelname_num

For example, the following call shows that the VDA Tool has two variables regis-
tered with it, and several Graels: two rectangles, a line, and a legend.

PRINT, TmEnumerateGraels(tool_name)
var1 var2 rectangle_0 rectangle_1 line_0 legend_0

Once you know the names of the Graels that are registered with a VDA Tool, you
can use other Tools Manager routines to extract and modify their attributes and
values.

For example, the following line of code obtains the names of several items, three
of which are Graels: two lines and a rectangle.

PRINT, TmEnumerateGraels(tool_name)
var1 var2 rectangle_0 line_0 line_2

These Graels probably have attributes, such as color, linestyle, and line thickness.
You can retrieve the attributes with the TmEnumerateAttributes function. The fol-
lowing lines of code show that the Grael LINE_0 has three attributes associated
with it: color, linestyle, and thickness.

PRINT, TmEnumerateAttributes(tool_name, ’LINE_0’)
COLOR LINESTYLE THICKNESS

This information can then be used to modify the Grael LINE_0. It is up to the
VDA Tools developer to determine how the user can modify any item. For a Grael,
you might design a View Attributes dialog box in which the user can change the

138 Application Developer’s Guide

characteristics of a selected Grael. The TmSetAttribute function provides the
means of accomplishing this:

tmp = TmSetAttribute(tool_name, ’LINE_0’, ’COLOR’, value)

where value is a user-supplied value for the plot color. This value might have
been obtained from a View Attributes dialog box.

Graphical Element API Routines

The following table lists the routines used to manage graphical elements, which are
primarily used to annotate plots — lines, rectangles, text, axes, and legends. They
are used primarily if you want to add new graphical elements or modify existing
ones, which, in general, is not necessary.

Functional Listing of Tools Manager Graphical Routines

Types of Grael Routines Grael Routine Name

General Grael Routines TmAddGrael
TmAxis
TmBitmap
TmDelGrael
TmEnumerateGraels
TmGetGraelRectangle
TmGetUniqueGraelName
TmLegend
TmLine
TmRect
TmSetGraelRectangle
TmText

Grael Method Routines TmEnumerateGraelMethods
TmExecuteGraelMethod
TmGetGraelMethod
TmSetGraelMethod

Grael Selection Routines TmAddSelectedGrael
TmDelSelectedGraels
TmEnumerateSelectedGraels

Grael Z-Order Routines TmBottomGrael
TmTopGrael

Grael Grouping Routines TmGroupGraels
TmUngroupGraels

 139

User Interface

The user interface for a VDA Tool consists of a top-level layout WAVE Widget and
a collection of child widgets such as menus, buttons, drawing areas, and text areas.
WAVE Widgets are described in Chapter 5, Using WAVE Widgets

NOTE The VDA Utilities are a set of convenience routines that provide high-level
compound widgets for use in VDA Tools, including a menu bar, button bar, dialog
boxes, and text area. These functions and their API are described in VDA Utilities
on page 139.

VDA Utilities
VDA Utilities are a set of high-level convenience routines that developers can use
to quickly develop and modify the user interface of a VDA Tool. These routines are
written in PV-WAVE and are located in:

(UNIX) <wavedir>/lib/vdatools

(OpenVMS) <wavedir>:[LIB.VDATOOLS]

(Windows) <wavedir>\lib\vdatools

Where <wavedir> is the main PV-WAVE directory.

VDA Utilities all begin with the prefix “Wo”.

The VDA Utilities layer allows the application developer to establish a consistent
and native application look and feel, have readily portable code, and take advantage
of inherent international support, while retaining some flexibility in terms of user
interface design.

The calls to VDA Utilities are the same on all platforms: applications based on
VDA Utilities for their user interface are immediately portable among all sup-
ported UNIX, OpenVMS, and Windows platforms.

Grael Cut, Copy, Paste, and
Delete Routines

TmCopy
TmCut
TmDelete
TmPaste

Functional Listing of Tools Manager Graphical Routines (Continued)

Types of Grael Routines Grael Routine Name

140 Application Developer’s Guide

VDA Utilities take advantage of PV-WAVE string and resource database facilities,
which allow you to adapt your applications easily to different languages.

Finally, VDA Utilities offer user interface flexibility. You can easily add new menu
items and functions to the standard menu and button bar utilities.

Three important VDA Utilities are:

• WoMenuBar

• WoButtonBar

• WoMessageArea

These three VDA Utilities are used to create the menus, buttons, and message area
in the graphical VDA Tools — WzPlot, WzImage, WzContour, and WzSurface.

Connecting to Online Help
The set of VDA Tools provided with PV-WAVE feature a context sensitive online
Help system. On UNIX and OpenVMS systems, the online Help that is used is
Hyperhelp from Bristol Technology. On Windows systems, the native Winhelp sys-
tem is used.

To access an online Help topic, a VDA Tool needs to know the name of the Help
file and the name of the specific topic to display.

The method TM_HELP activates the Help system and displays a specified topic in
the viewer.

See also Adding Online Help on page 152.

Example

The following two calls set attributes that can be retrieved and used in the PV-
WAVE HELP command to call a particular online Help topic.

old_f = TmSetAttribute(tool_name, ’TM_HELP’, ’HELP_FILE’, $
<filepath>)

; This call sets an attribute — the filepath for an online Help file.

old_t = TmSetAttribute(tool_name, ’TM_HELP’, ’TOPIC’, $
<topic_name>)

; This call sets an attribute — the name of an online Help topic.

 141

TIP The WoGenericDialog function accepts these two attribute settings with the
Help keyword and handles calling the HELP command.

If you do not use WoGenericDialog, then you will need calls like the following to
display an online Help topic:

file = TmGetAttribute(tool_name, ’TM_HELP’, ’HELP_FILE’)

; Retrieve the filepath of the online Help file.

topic = TmGetAttribute(tool_name, ’TM_HELP’, ’TOPIC’)

; Retrieve the Help topic name.

HELP, topic, Filename=file

; Display the help topic.

Tool-to-Tool Communication Routines
VDA Tools can exchange data such as variables, graphical elements, and selection
information. For variables, an export function is provided on the standard File
menu. This export function lets you export a variable to one or more VDA Tools.
For graphical elements, functions on the standard Edit menu and the Button Bar
let you cut or copy graphical elements from one VDA Tool and paste them in
another VDA Tool. Data that is selected on one VDA Tool is shown highlighted in
all other active VDA Tools displaying the same variable.

The Selection List

The Tools Manger uses a selection list to exchange data between VDA Tools. First,
data to be exported or copied is placed on a “selected list”. The
TmAddSelectedVars and TmAddSelectedGrael routines accomplish this step. The
TmDeselectVars and TmDelSelectedGraels command removes specified variables
or graphical elements from the selected list.

The TmExportSelection or TmPaste command can be used to send the data or
graphical element(s) currently on the selection list to another VDA Tool.

Exporting Variables from $MAIN$

VDA Tools rely on the TmExport function to export variables on the $MAIN$ pro-
gram level to specified VDA Tool(s).

142 Application Developer’s Guide

VDA Tools Can Accept or Reject Exported Variables

You can provide a function so that the user can select whether or not a VDA Tool
will accept an exported variable. This function is available on the
Attributes=>View Attributes dialog box of graphical VDA Tools such as WzPlot.

The following calls to TmSetAttribute set whether or not VDA Tools will accept
exported variables.

old= TmSetAttribute(tool_name, ’TM’, ’IMPORT’, 1)

; Sets the IMPORT attribute to 1. This setting indicates that the VDA Tool will
; accept variables.

old = TmSetAttribute(tool_name, ’TM’, ’IMPORT’, 0)

; Sets the IMPORT attribute to 0. This setting indicates that the VDA Tool will
; accept not variables.

old = TmSetAttribute(tool_name, ’TM’, ’REPLACEVAR’, 1)

; Sets the REPLACEVAR attribute to 1. This setting indicates that the VDA
; Tool will replace the current variable instead of adding to its list of variables.

The TM_DATA_IMPORT method must be defined for the given VDA Tool. The
method procedure for TM_DATA_IMPORT must perform the appropriate import
actions.

We recommend you use the TM_DATA_IMPORT method procedure to check the
value of the IMPORT attribute, and display an appropriate alert if importing is
disabled.

Creating Optional Areas in VDA Tools
You can make specific areas in a VDA Tool optional and provide a menu that
allows the user to show or hide these optional areas. For example, the WzSurface
VDA Tool contains three optional areas: the Buttonbar, the Controls area, and the
Message area. Using the Options menu, the user can choose to hide or show any
combination of these areas.

The following sections discuss the steps required to create optional areas in VDA
Tools.

 143

Modify the Menu Structure

Add the Option menu code to the menu structure for the VDA Tool. To do this, edit
the VDA Tool menu file. For instance, for WzSurface, this file is called
wzsurfacemenus.pro.

The Option menu code, shown below, should be inserted immediately before the
code for the Windows menu:

NAME: [’OptionsMenu’, ’OptionsMenu’],$

MENUBUTTON: ’’,$

MENU:{,CALLBACK:’WoGMBOptionsButtonBarCB’,$

NAME: ’OptionsButtonBar’,$

TOGGLE: ’’, $

CALLBACK:’WoGMBOptionsControlsAreaCB’, $

NAME: ’OptionsControlsArea’,$

TOGGLE: ’’, $

CALLBACK:’WoGMBOptionsMessageAreaCB’, $

NAME: ’OptionsMessageArea’,$

TOGGLE: ’’ $

}, $

Adjust the Menu Pane Number

For existing VDA Tools, in the main VDA Tool procedure file (e.g.,
wzsurface.pro), increment by one the pane number that is saved for the
WINDOW_MENU attribute.

For example,

tmp = TmSetAttribute(tool_name, ’MENUBAR’, ’WINDOW_MENU’, 6)

should be changed to:

tmp = TmSetAttribute(tool_name, ’MENUBAR’, ’WINDOW_MENU’, 7)

Set the Status of the Option Menu Toggles

Set the status of the menu toggles to the correct state by getting the current toggle
settings and resetting them accordingly. This step is needed because it is possible
that these values were saved in a previous session and then restored.

The following code fragment is taken from wzsurface.pro. It shows how
TmGetAttribute is used to get the current status (shown or hidden) for the Button-

144 Application Developer’s Guide

bar, Controls area, and Message area. The returned values are then used in
WoMenuBarSetToggle to reset the Option menu toggles.

status = [$

TmGetAttribute(tool_name, ’TM’, ’BUTTONBAR_STATUS’, $
Default=1), $

TmGetAttribute(tool_name, ’TM’, ’CONTROLS_STATUS’, $
Default=1), $

TmGetAttribute(tool_name, ’TM’, ’MESSAGE_STATUS’, $
Default=1) $

]

WoMenuBarSetToggle, tool_name, [7, 7, 7], [1, 2, 3], status

Call WoGMBOptionsInit

After creating all the optional areas in the VDA Tool (e.g., for WzSurface, this
includes the Buttonbar, Controls area, and Message area), call the routine
WoGMBOptionsInit:

WoGMBOptionsInit, tool_name

This routine checks the *_STATUS attributes and hides those areas that should not
appear when the VDA Tool is managed.

Implementation for Optional Message Area

The WoMessage routine is equipped to automatically handle the unregistering of
the message area.

Implementation for Optional Button Bar

There are two requirements for creating an optional button bar. First, the button bar
and the status area (tool tips) must be in a single form that can be unmanaged. Sec-
ond, the parent of the form must also be a form with attachments to the other
widgets in the tool.

For example, if the original code is:

bblayout = WwLayout(layout, /Form, Top=bar, /Left, /Right)

tb = WoButtonBar(bblayout , tool_name, /Top, /Graphics, $
/Left, /Right)

The following modifications must be made, where the button bar and status area
are children of a form, which is in turn the child of a form.

 145

bbtoplayout = WwLayout(layout, /Form, Top=bar, /Left, /Right)

Create a top-level form.

bblayout = WwLayout(bbtoplayout, /Form, /Top, /Left, /Right)

Create a child form that can be unmanaged.

tb = WoButtonBar(bblayout, tool_name, /Top, /Graphics, $
/Left, /Right)

Attach the button bar to bblayout.

s = TmSetAttribute(tool_name, ’TM’, ’BUTTONBAR_ID’, bblayout)

Attach the status area to bblayout.

All attachments from other widgets must be made to bbtoplayout. Specifically
the drawing area and controls areas should have a top attachment to
bbtoplayout.

Implementation for Optional Controls Area

An optional controls area is created much like the optional button bar. First, the
controls area must be in a layout that can be unmanaged. Second, like with the but-
ton bar, the parent of the form must also be a form with attachments to the other
widgets in the tool.

The following lines of code demonstrate the correct way to create an optional con-
trols area:

ctltopLayout = WwLayout(layout, /Form, Top=bbtoplayout, $
Bottom=ms, /Left)

Create the top-level layout.

controlsLayout = WwLayout(ctltopLayout, /Form, /Frame, $
/Top, /Bottom, /Left, /Right)

Create a child form that can be unmanaged.

save_wid = WwGetValue(controlsLayout, /Parent)

While it looks like the WwGetValue call returns ctltopLayout it really returns the
widget ID for the frame widget that was created. If the second WwLayout call
above did not have the Frame keyword, the call to WwGetValue would not have
been necessary, and the controlsLayout widget ID could be used in the following
assignment statement.

s = TmSetAttribute(tool_name, ’TM’, ’CONTROLS_ID’, save_wid)

146 Application Developer’s Guide

Creating a Navigator
A Navigator is an interface for VDA Tools. For instance, a Navigator can be created
to combine several VDA Tools into a single application. A Navigator is provided
with PV-WAVE; however, an application programmer can easily modify this pre-
written Navigator or create an entirely new Navigator.

The PV-WAVE Navigator

The PV-WAVE Navigator is a prewritten application that is provided with PV-
WAVE. To run the PV-WAVE Navigator, enter Navigator at the PV-WAVE
command line.

The PV-WAVE Navigator is located in the directory shown in Figure 4-6:

Figure 4-6 PV-WAVE Navigator directory structure.

PV-WAVE Navigator Files

The PV-WAVE Navigator consists of the following three files.

• navmenus.pro — Contains definitions for the menus on the Navigator and
specifies the menu item callbacks.

• navtools.pro — Contains a list of the names of the VDA Tools, the num-
ber of variables that each VDA Tool can accept, and the position coordinates
of each VDA Tool in the Navigator.

Main VNI Product Installation Area (VNI_DIR)

navigator-1_0 wave license <options>

lib

navmenus.pro
navtools.pro
navigator.pro
navigator.cpr

 147

• navigator.pro — This is the main program file for the Navigator. It con-
tains the callback procedures for all of the callbacks in navmenus.pro. This
file contains routines that handle session saving and restoring. In addition, this
file contains the main startup routine for the Navigator.

If you create your own Navigator, we recommend that you follow this basic design;
however, you might not need all the components of the PV-WAVE Navigator. For
instance, you could create a Navigator that does not have a menu bar.

Modifying the PV-WAVE Navigator

You can modify the existing PV-WAVE Navigator in a number of ways. For
instance, you can add or remove VDA Tools from the Navigator.

To modify the Navigator, edit the appropriate files in the navigator-1_0 direc-
tory. (We recommend that you make a copy of any file you change.)

For example, to remove the WzSurface Tool from the Navigator, edit the file
navtools.pro to remove the WzSurface name, number of variables that the
VDA Tool can accept, and position elements. You do not need to modify the
navigator.pro file to add or remove a VDA Tool.

TIP You can also use the Configure menu on the Navigator to add or remove VDA
Tools. The Configure menu provides an interactive way to perform the same task
described in this section.

Creating a New Navigator

The most basic requirements for a Navigator are that it must be able to call VDA
Tools and determine which variable is currently selected. The second requirement
is important so that the Navigator knows what variable to load when a particular
VDA Tool is called.

The PV-WAVE Navigator is only one possible way in which a Navigator could be
configured. Depending on the application you have in mind, you may want to cre-
ate an entirely different Navigator.

Step 1 Decide what tools you want your Navigator to have.

Step 2 Decide what kind of user interface you want. You might choose not to
have a menu bar, for instance.

148 Application Developer’s Guide

Step 3 Write the main Navigator procedures. To do this, we recommend that you
look at the existing PV-WAVE Navigator files for guidance. These files
define menus and buttons, specify the VDA Tools in the Navigator,
implement callbacks, and initialize the Navigator.

Resources for the Navigator

The user interface resources for the PV-WAVE Navigator are located in the same
area as the other VDA Tool resources as shown in Figure 4-7:

Figure 4-7 Directory tree showing the location of X Resources for the Navigator and VDA
Tools.

Resources and Strings
GUI application management is aided by using resource and string files. Resource
and string files provide an easy method for customizing and internationalizing PV-
WAVE applications. This is accomplished by isolating the dynamic aspects of the
application in files which are distinct from the code. Thus, the ability to customize
becomes a process of translating a few files in tight proximity rather than many
individual lines of code spread throughout the application. Resources are distin-
guished from strings because they describe the appearance or behavior of widgets,
while strings are not specifically widget-related.

Main PV-WAVE Directory (WAVE_DIR)

lib xres

american other_lang

nav.ad nav.ads

vdatools

wz*.pro
wo*.pro
tm*.pro vdatools

*.ad *.ads

 149

Resources

Using resources to describe the appearance of the application enables you to cus-
tomize Wave Widgets or VDA Tools to your applications, without needing to
modify the code. In addition, PV-WAVE is designed to allow multiple resource files
per application, so the various resources can be loaded as needed rather than load-
ing everything at the application startup.

A resource definition as it appears in a resource file is really a name/value pair. The
name, the first part of the pair, describes the widget to which the resource value is
applied. For instance, the following resource name/value pair:

myapp.save_button.labelString: Save

essentially says,

Within the application myapp there is a button named save_button.
Set the label on that button to the string "Save".

Resource files are a collection of many resource name/value definitions, such as the
previous example, that are loaded as needed prior to creating the widgets they
describe.

Resource names are constructed by traversing the widget tree to the target widget
instance. The precise path required depends on the design of your particular appli-
cation. Widgets are named explicitly using specific keywords found in the Wave
Widget commands. The Ww layer routines you use to create a widget have one or
more of the following keywords: Name, Layout_Name or Shell_Name. These key-
words use one or more resource datatype strings to create widgets with the
specified names.

Resources loaded using the PV-WAVE resource-loading routines (see Using
Resources and Strings in PV-WAVE Applications on page 150) are merged into the
standard system resource database which is used when widgets are created. As a
result, no special commands are necessary to assign the resource values to a wid-
get; instead, this is done automatically when the widget is created.

NOTE You must name the resource so that it matches the name of the widget it
modifies.

Many rules exist regarding the syntax of resource definitions. For a complete
description of resource bindings and precedence rules consult the chapter on
Resource Management in X Toolkit Intrinsics Programming Manual, Volume 4,
O’Reilly & Associates, Inc.

150 Application Developer’s Guide

Strings

Strings are similar to resources in that they allow you to customize your PV-WAVE
applications without having to modify the code. The difference is that strings do
not directly describe the appearance or behavior of a widget like resources do.
Strings are often used for error messages or to construct labels that are completed
during the execution of the application.

For instance, suppose the application opens a user-specified file as part of its com-
mands. The application should have the capability to display an error message in
the event the named file doesn’t exist when the application is run. Since it’s desir-
able to specifically name the file as part of the message, the message construction
should consist of a static string (such as 'Cannot open the file') and a dynamic file
name. String files are used for just this purpose.

The string file syntax is very similar to that of a resource file; it’s comprised of a
name/value pair. Unlike resource definitions, however, the name portion of the
string definition is a single identifying string rather than a hierarchical definition.
For instance, the following string definition:

myapp_open_error: Cannot open the file

defines a string suitable for the example.

Strings loaded using the PV-WAVE string-manipulating routines are loaded into a
common string database. The database is distinct from the resource database, so no
interaction between strings and resources is possible.

NOTE Special care should be taken to ensure that the name used in the string def-
inition is unique among all other strings loaded by any application.

A good way to ensure your string names are unique is to add the application name
to the front of the string name. In this way, the possibility of conflicting definitions
exists only if two applications have the same name.

Using Resources and Strings in PV-WAVE Applications
The resource handling routines and the corresponding architecture levels are
shown in the following table.

 151

The STRLOOKUP and WtResource routines form the foundation for the VDA
Tool Utility functions (TmGetMessage, WoLoadResources, and WoLoadStrings).
The lower-level routines require specific path and file names to access the resource
and string files. The higher-level functions can be used with or without a specified
pathname.

In addition to being able to use more than one resource file in a given application,
you can also access two types of resource files: widgets (object-related), and strings
(object-less).

Widget Resource Files

Widget resource files are distinguished by the .ad filename extension. These files
allow you to customize the appearance and behavior of parent and compound wid-
gets created using WAVE Widget routines. This custom naming feature, in turn,
improves the maintainability of GUI applications.

The widget initialization routines WwInit and WtInit allow you to specify a
Resource keyword. This keyword specifies a resource file to load. If this keyword
is not used, PV-WAVE looks for the following file by default:

(UNIX) $WAVE_DIR/bin/Wave.ad

(OpenVMS) WAVE_DIR:[BIN]WAVE.AD

Note that the Wave.ad file is not distributed with PV-WAVE. You must supply
this file if you would like PV-WAVE to load it.

You can load resources at any time after calling WtInit or WwInit. For WAVE Wid-
gets applications, the routine WwResource is used to load, add, or save additional
resources. VDA Tools use the utility routine, WoLoadResources procedure, to load
resource files. Prior to loading the resource file, WoLoadResources searches direc-
tory paths to find the resource file to load.

Resource and String Routines Architecture Level

STRLOOKUP (see the PV-WAVE Reference PV-WAVE Foundation

WtResource WAVE Widgets, Widget Toolbox

TmGetMessage VDA Tools Manager

WoLoadResources VDA Tools Utilities

WoLoadStrings VDA Tools Utilities

152 Application Developer’s Guide

String Files

String resource files contain error messages and other text strings, and are recog-
nized by their .ads filename extension. The capability to specify and access
multiple object-less resources allows you to customize messages and other text
used in your application, including internationalization of your applications.

String files may be loaded at any time in a PV-WAVE session, since the STR-
LOOKUP function doesn’t require the Wave Widgets environment to be
initialized. Once a string file has been loaded into the string database,
STRLOOKUP may be used to extract values.

VDA Tools are designed to need only the TmGetMessage function for their string
operations. Since the string file is loaded (if necessary) prior to querying the data-
base, the filename is specified in each call to TmGetMessage. Internally,
TmGetMessage uses the WoLoadStrings procedure to load the string file.

Adding Online Help
This section discusses how online help for VDA Tools is implemented. Read this
section if you plan to incorporate online help into your own VDA Tools applica-
tions. Two methods of creating online help for VDA Tools are discussed. One
method requires that you purchase additional software needed to create help files.
The second method involves using a WAVE Widgets text widget to display online
help information.

If you are creating a new VDA Tools application, you may want to develop online
help information for your users. On UNIX and OpenVMS platforms, PV-WAVE
online help files are created with a Hyperhelp® compiler from Bristol Technology.
To create the same style of online help for new VDA Tools applications, you must
purchase this compiler from Bristol Technology. The compiler converts document
files (in FrameMaker MIF or RTF format) to a Hyperhelp help file that can be dis-
played in the Hyperhelp viewer, which is provided with PV-WAVE.

On Windows platforms, online help for VDA Tools is distributed in WinHelp for-
mat. Many third-party products are available for creating WinHelp files.

NOTE Because the online help files that are distributed with PV-WAVE are binary
files, there is no way to edit or modify them.

If you plan to use Hyperhelp to create new online help files for UNIX and
OpenVMS platforms, you can contact Bristol Technology, Inc. about purchasing

 153

the software required to create Hyperhelp online help files. The documentation that
comes with Hyperhelp software explains how to author help files, compile them,
and integrate them into your application.

Bristol Technology, Inc.
39 Old Ridgebury Road
Danbury, CT 06810-5113 USA
Phone: 203-798-1007
Fax: 203-789-1008
Email: info@bristol.com
Web: www.bristol.com

If you do not wish to use Hyperhelp or WinHelp for your customized online help
system, it is possible to develop online information in ASCII format and display it
using a WAVE Widget, such as the widget WwText. For detailed information on
using WAVE Widgets and on WwText, see Chapter 5, Using WAVE Widgets.

Online Help Implementation Overview

A user can access online help from a VDA Tool in two ways: from the Help menu
or by clicking the Help button in a dialog box. In each case, menu and dialog box
button callbacks are used to activate the online help system and display the appro-
priate topic in the help viewer.

NOTE If you are using the Hyperhelp or WinHelp to develop your own online help
topics, then most of the applications programming work is already done for you.
Existing VDA Tool convenience routines for adding menus and dialog boxes to
VDA Tools provide prewritten callback routines that activate the approriate online
help system. All you need to do when creating your own VDA Tools is to set the
values for the help filename and the name of specific topic you want to display in
your VDA Tool code.

The Help Menu

The standard VDA Tool Help menu contains four buttons:

• On Window — When this button is selected, the help system starts and a spe-
cific help topic is displayed. This help topic is the table of contents topic for
information on that specific VDA Tool. You must supply the specific help file-
name and topic name in the menu callback. This callback calls the PV-WAVE
HELP procedure with the Filename and Keyword parameters.

154 Application Developer’s Guide

• Index — When this button is selected, the help system starts and displays the
help index. The callback routine calls the PV-WAVE HELP procedure with the
Index keyword.

• On Help — When this button is selected, the help system starts and displays
information on how to use the online help system. The callback routine calls
the PV-WAVE HELP procedure with the Help keyword.

• On Version — When this button is selected, the help system starts and a spe-
cific help topic is displayed. This help topic contains information on the current
software version. You must supply the specific help filename and topic name
in the menu callback. This callback calls the PV-WAVE HELP procedure with
the Filename and Keyword parameters.

Menu callbacks are defined in wographicsbuttonscb.pro. In the following
code fragment, note that the objective of the callback is to call the HELP routine
with the proper Filename and Keyword parameters. The values of these parameters
are obtained via calls to TmGetAttribute. The attributes themselves must have been
defined for the TM_HELP method in the specific VDA Tool program.

;--

; Help menu Callbacks

;--

; Help->On Window...

; ------------------

PRO WoGMBHelpOnWindowCB, wid, index

 DECLARE FUNC, TmGetAttribute

tool_name = WoGMBGetMenuBarToolName(wid)

topic = TmGetAttribute(tool_name, ’TM_HELP’, ’ON_WINDOW’, $
Default=’HELP’)

helpfile = TmGetAttribute(tool_name, ’TM_HELP’, $
’HELP_FILE’, Default=GETENV(’WAVE_HLPFILE’))

HELP, topic, Filename=helpfile

END

The values needed by the menu callback to display the proper help file and topic
are defined in the VDA Tool program using calls to TmSetAttribute. For example:

old_f = TmSetAttribute(tool_name, ’TM_HELP’, ’HELP_FILE’, $
<filepath>)

; This call sets an attribute — the filepath for an online Help file.

old_t = TmSetAttribute(tool_name, ’TM_HELP’, ’TOPIC’, <topic_name>)

; This call sets an attribute — the name of an online Help topic.

 155

NOTE Two attributes that you must set in the VDA Tool program are called
ON_WINDOW and ON_VERSION. These are the help topics that can vary for each
VDA Tool and application. In general, there is no reason to change the other two
menu buttons, Index and On Help, as these display topics that do not vary from
application to application.

Dialog Boxes

The WoGenericDialog box is a convenience routine used extensively in VDA Tools
to create dialog boxes. This routine has a Help keyword that is used to specify the
help filename and topic name to use when the user clicks on the Help button. In your
VDA Tool code, you need to provide the appropriate values for this keyword.
WoGenericDialog then simply calls HELP with these topic and filename values.

If you do not use WoGenericDialog, then you will need calls like the following to
display an online Help topic (i.e., you need to include a specific call to HELP in the
callback routine for the Help button of each dialog box).

file = TmGetAttribute(tool_name, ’TM_HELP’, ’HELP_FILE’)

; Retrieve the filepath of the online Help file.

topic = TmGetAttribute(tool_name, ’TM_HELP’, ’TOPIC’)

; Retrieve the Help topic name.

HELP, topic, Filename=file

; Display the help topic.

Adding Online Help without Hyperhelp or WinHelp
Software

If wish to add context sensitive help to a VDA Tool, but you do not wish to pur-
chase Hyperhelp or WinHelp software, you can do so using an alternate
mechanism, such as the WAVE Widget WwText. If you use WwText, you will need
to author the online help information in ASCII files.

The Help Menu

If you are using the standard VDA Tool menu, as provided by the routine WoM-
enuBar, you will need to do two things:

• Modify the menu callbacks in wographicsbuttonscb.pro for each
menu item. You must create new callbacks because the existing callbacks are
tailored specifically for Hyperhelp. The new callback you write will call the

156 Application Developer’s Guide

WAVE Widgets function WwText to display the help information you have
written.

• Modify the CALLBACK field in the menu structure for your Help menu. The
menu structures for VDA Tools are in wz*menus.pro (for example.,
wzplotmenus.pro). You simply need to add the name of the callback rou-
tine you write containing the WwText call to this field.

Dialog Box Help

Use the WAVE Widgets WwGenericDialog, instead of WoGenericDialog, to create
the dialog boxes in your VDA Tools. WoGenericDialog is set up specifically to
access Hyperhelp. It would be difficult to modify this convenience routine to work
with an alternative help system.

With WwGenericDialog, you can use the optional labels parameter to specify the
buttons that will appear in a dialog box. The callback routine, then, can be a simple
case statement that takes appropriate action depending on which button was
selected. For the Help button, this case statement can call WwText directly to dis-
play the appropriate help information.

157

CHAPTER

5

Using WAVE Widgets
This chapter explains how to use WAVE Widgets to create graphical user interface
(GUI) applications in PV-WAVE.

The first section of this chapter is designed to help you choose the most appropriate
method for your application.

The rest of this chapter describes WAVE Widgets, a set of easy-to-use, high-level
widget routines that allow you to develop Motif or Windows GUIs with PV-WAVE.
The Widget Toolbox and VDA Tools are discussed in the following chapters.

NOTE Visual Numerics does not support the use of WAVE Widgets with Open-
VMS 24-bit display hardware.

Methods of GUI Programming in PV-WAVE

WAVE Widgets and the Widget Toolbox

WAVE Widgets is an easy-to-use set of PV-WAVE functions for creating Motif or
Windows GUIs for PV-WAVE applications. Applications created with WAVE Wid-
gets are completely portable between Motif and Windows environments. WAVE
Widgets are designed for developers who require cross-platform GUI applications.
See Introduction to WAVE Widgets on page 161 for more information.

The Widget Toolbox is a set of PV-WAVE functions used to create Motif or Win-
dows Graphical User Interfaces (GUIs) for PV-WAVE applications. The Widget

158 Application Developer’s Guide

Toolbox (Wt) functions call Motif or Windows GUI routines directly, and are
designed primarily for developers who are already experienced with Motif or Win-
dows GUI development. See Chapter 6, Using the Widget Toolbox, for detailed
information on the Widget Toolbox functions.

Figure 5-1 shows how WAVE Widgets and the Widget Toolbox are layered on top
of the Motif toolkit, Xt Intrinsics, Xlib, and the operating system.

Figure 5-1 WAVE Widgets and the Widget Toolbox are built on top of the Motif toolkit. The
Widget Toolbox also communicates with Xt Intrinsics, XLib, and the Operating System.

Windows Advanced Controls Library

The Windows Advanced Controls Library (WAC) was developed to allow portabil-
ity between Motif-based and Microsoft Windows applications. The WAC is built
upon Windows GDI, Windows Controls, and ported subsets of X Windows and Xt
Intrinsics. Above the WAC are Widget Toolbox and WAVE Widgets functions,
which are designed to be portable between Microsoft Windows and X Windows.

Widget Toolbox

Motif Toolkit

Xt Intrinsics

XLib

Operating System

HardwareHardware

WAVE Widgets

 159

Figure 5-2 shows the general configuration of WAVE Widgets, the Widget Tool-
box, and the Windows Advanced Controls Library.

Figure 5-2 The Windows Advanced Controls Library (WAC) relies on a ported subset of Xt
Intrinsics and X Windows. This provides portability of the WAVE Widgets and Widget Tool-
box functions between Microsoft Windows and X Window based systems.

The following table lists the advantages and disadvantages of all the methods avail-
able to developers for creating GUI applications. Use this table to help determine
which method is best for you.

GUI Development Methods for PV-WAVE

Method Advantages Disadvantages

Widget Toolbox Creates Motif or Windows
GUIs.
All programming done in PV-
WAVE.
All Motif widget classes are
supported.
Allows rapid prototyping.
Highly flexible.
No knowledge of C required.

Application developer must
be experienced using the
Motif widget toolkit.
Not portable between Motif
Microsoft Windows environ-
ments.

Win32 API

X Windows

Xt Intrinsics Windows Advanced
Controls Library (WAC)

Windows Controls

Widget Toolbox (Wt)

WAVE Widgets (Ww)

Graphics Device Interface (GDI)

160 Application Developer’s Guide

WAVE Widgets Easy to use.
Creates Motif or Microsoft
Windows GUIs.
Completely portable between
Motif and Microsoft
Windows environments (no
modification required).
All programming done in PV-
WAVE.
No experience programming
with the Motif widget toolkit
required.
No knowledge of C required.
Users can create new and
modified WAVE Widgets
functions.
Allows rapid prototyping.
Contains sufficient
functionality for most GUI
development projects.

Limited number of widget
classes are supported.
Less overall flexibility in
interface design.

VDA Tools All programming done in PV-
WAVE.
Provides easy-to-call user
interface components which
can reduce overall
programming time.
Multiple instances of a VDA
Tool are instantiated from the
same source code.
Provides code generation
functions.
Easy to internationalize (via a
string server).

Must be purchased separately.
Requires substantial PV-
WAVE programming
experience to develop new
VDA Tools not already
provided.
Less overall flexibility in
interface design (comparable
to WAVE Widgets).
Limited number of widget
classes are supported (compa-
rable to WAVE Widgets).

C-based applications that call
PV-WAVE

(The application interface can
be developed in C, and, via
PV-WAVE‘s interapplication
communication functions, the
C application can call PV-
WAVE to perform data
processing and display
functions.)

Highly flexible.
Can be C code generated by
any GUI builder.
Can be used to add Visual
Data Analysis capability to an
existing application.

Application developer must
be experienced using the
Motif or Windows widget
toolkit.
Most complicated method of
application development.
Knowledge of C required.
Knowledge of interapplica-
tion communication required.

GUI Development Methods for PV-WAVE (Continued)

Method Advantages Disadvantages

 161

Introduction to WAVE Widgets
WAVE Widgets provides an easy way for PV-WAVE application developers to cre-
ate Motif and Windows GUIs. You can think of a widget as a user-interface object,
such as a dialog box, a button box, or a file selection box. WAVE Widgets is a set
of functions that create a number of different kinds of widgets. Widget character-
istics such as text, color, and position are controlled using keywords. See Creating
and Arranging WAVE Widgets on page 165 for a complete list of the types of
WAVE Widgets.

For example, Figure 5-3 shows a Motif-style dialog box created with the WAVE
Widgets function WwDialog.

Figure 5-3 Motif-style dialog box, created with the WwDialog function.

Who Uses WAVE Widgets

WAVE Widgets are designed for developers with little or no experience with Motif
or Windows GUI development. Developers who are experienced GUI programers
may want to use WAVE Widgets for the rapid development of application
prototypes.

WAVE Widgets are Standard Library Functions

The WAVE Widgets functions are located in the PV-WAVE Standard Library in the
subdirectory:

(UNIX) $VNI_DIR/wave/lib/std/motif

(OpenVMS) VNI_DIR:[WAVE.LIB.STD.MOTIF]

(Windows) %VNI_DIR%\wave\lib\std\windows

Where VNI_DIR is the main Visual Numerics directory.

162 Application Developer’s Guide

Designing Your Own WAVE Widgets

The implementation of WAVE Widgets is straightforward, making it relatively easy
for developers to customize and invent their own WAVE Widgets routines.
Developers who create their own WAVE Widgets routines may share them with
other users by submitting them to the Users’ Library. For more information see the
section the section The Users’ Library in Chapter 9 of the PV-WAVE Programmer’s
Guide.

WAVE Widgets are Portable

Applications developed with WAVE Widgets are completely portable between
Motif and Windows systems. No matter which window system your application is
destined to use, the WAVE Widgets programming interface is always the same.

First Example and Basic Steps
This section briefly introduces the basic steps involved in creating a WAVE Wid-
gets application.

First Example

The following example incorporates each of the basic steps described later in this
section. To run this example, enter the callback procedure below in a file, and com-
pile it with the .RUN command. Then enter the widget commands at the WAVE>
prompt. A radio button box appears on the screen. Each time you click on a radio
button, the callback procedure is executed and some information is printed in the
main PV-WAVE window. The radio box is shown in Figure 5-4.

To dismiss the radio box widget, select the appropriate function (such as Close)
from the widget’s window manager menu.

 163

Figure 5-4 Radio button box (Motif style).

Callback Procedure

Callback procedures are routines that are executed in response to an event that
occurs inside a widget, such a mouse click.

PRO RadioCB, wid, which

CASE which OF

1: PRINT,’First Toggle Selected’

2: PRINT,’Second Toggle Selected’

3: PRINT,’Third Toggle Selected’

ENDCASE

value = WwGetValue(wid)

PRINT, value

END

Widget Commands

top=WwInit(’ww_ex1’, ’Examples’, layout)

labels=[’System’,’Owner’,’Group’]

rbox=WwRadioBox(layout,labels, ’RadioCB’, $
/Vertical, Border=2, Spacing=20)

status=WwSetValue(top, /Display)

WwLoop

The Basic Steps

To use WAVE Widgets in an application, you always follow these basic steps.
These steps are described in more detail in the remainder of this chapter.

❑ Create callback procedures.

window manager
menu button

radio buttons

164 Application Developer’s Guide

Callback procedures are routines that are executed in response to an event, such
as clicking a button or dismissing a dialog box.

❑ Initialize WAVE Widgets with the WwInit function. For example:

top = WwInit(’appl’, ’Appl’, layout)

❑ Create widgets by calling the appropriate WAVE Widgets functions. All
WAVE Widgets function names begin with Ww. For example:

bbox=WwButtonBox(layout, labels, ’ButtonCB’,$
/Horizontal, Spacing=20)

❑ Display the top-level widget with the WwSetValue command and the Display
keyword. For example:

status=WwSetValue(top, /Display)

❑ Execute the WwLoop function. This function executes the “event loop”, which
handles events (such as mouse clicks) and dispatches callbacks (routines that
are executed in response to events).

Initializing WAVE Widgets
The WAVE Widgets function WwInit initializes WAVE Widgets. You must place a
call to WwInit at the beginning of any application that uses WAVE Widgets.
WwInit does the following:

• Establishes a connection to the X Windows server.

• Initializes Xt Intrinsics.

• Initializes the Motif Toolkit (or the Windows Advanced Controls (WAC)
Library under Windows).

• Initializes WAVE Widgets.

• Creates a top-level shell.

• Creates a layout widget inside the top-level shell.

WwInit has the following form:

top = WwInit(name, class, workarea [, keywords])

The name parameter specifies the name of the application, and the class parameter
indicates a more general category of application class. WwInit also creates the first
top-level shell or root window and an initial layout widget. The ID of the layout
widget is returned by the workarea parameter. The function returns the ID of the
top-level shell. For example:

 165

top=WwInit(’simple_image’,’Examples’,layout,$
Background = ’Skyblue’)

where simple_image is the name of the application, and Examples specifies
a general class to which simple_image belongs. The layout parameter
returns the ID of the layout widget that is created inside the top-level shell. Finally,
a background color is specified with the Background keyword. The ID of the top-
level shell is returned in the variable top. For more information on the top-level
shell, see The Widget Hierarchy on page 166.

One purpose of specifying a general class of application (the class parameter) is
that resources can be shared, via a resource file, among elements of that class. In
general, WAVE Widgets applications do not require a resource file. Some develop-
ers, however, may create applications that use both WAVE Widgets and Widget
Toolbox calls to produce the GUI. In this case, a resource file can be shared by all
of the widgets used in the application. Note, however, that if color keywords, such
as Background and Foreground, are used in a WAVE Widgets call, the specified
color(s) override color specifications made in a resource file.

For more information on layout widgets, see Arranging Widgets in a Layout on
page 169.

Example

Here’s a simple example showing the use of WwInit in the creation of a multi-line
text widget. You can display the text widget by entering the commands as shown
at the WAVE> prompt.

top=WwInit(’ww_ex2’, ’Examples’, layout)

filename = getenv(’WAVE_DIR’)+ ’/Tips’

text=WwText(layout, ’TextCB’, /Read, $
File=filename, Cols=40, Rows=20)

status=WwSetValue(top, /Display)

WwLoop

Creating and Arranging WAVE Widgets
This section explains the widget hierarchy, lists the general types of widgets that
are available, and explains how to arrange widgets in a layout.

166 Application Developer’s Guide

The Widget Hierarchy

WAVE Widgets applications consist of a hierarchy of widgets. The widget hierar-
chy refers to the top-level or root widget and all of the widgets that are related to
it. The relationship between widgets in a hierarchy is usually described as a “par-
ent/child” relationship. Each time you create a new widget, you must specify its
parent.

At the top of every widget hierarchy must be a special type of widget called the root
or main window. This window is created by the WwInit function. The root window
widget provides an interface between the widget hierarchy and the window man-
ager. In addition, WwInit creates a “layout” widget, which is like a container in
which other widgets are arranged.

NOTE You can create additional main windows with the WwMainWindow
function.

Figure 5-5 shows a WAVE Widgets GUI that is composed of a root window, two
layout widgets, and ten other widgets (w 1 – w 10). These widgets could be buttons,
sliders, menu bars, etc.

Figure 5-6 shows the hierarchical relationship between the widgets in the above
GUI. The root window is the top-level window, and it is the parent of layout 1 (both
the root window and the first layout widget are created by WwInit). Layout 1 is the
parent of widgets w 1, w 2, w 3, w 4, w 5, and layout 2. Layout 2 is the parent of
widgets w 6, w 7, w 8, w 9, and w 10.

Figure 5-5 Schematic of WAVE Widgets GUI that contains two layout widgets and ten other
widgets.

root window

layout 1

layout 2

w 1
w 2

w 3

w 4

w 5

w 7 w 9

w 8 w 10

w 6

 167

Figure 5-6 The widget hierarchy for the WAVE Widgets application shown in Figure 5-5.

Each separate widget is represented externally by a widget ID (a variable of type
long), returned by the creation function, such as WwButtonBox.

Types of WAVE Widgets

The following is a list of the kinds of widgets you can create with WAVE Widgets.
Examples are shown throughout this chapter.

• Button Box — A horizontally or vertically oriented box containing push but-
tons. See Creating a Button Box and a Tool Box on page 179 for more
information.

• Command Widget — A widget used for command entry with a built-in
command history mechanism. It includes an input text field, a label, and a
command history list. See Creating a Command Widget on page 198 for more
information.

• Controls Box — Horizontally or vertically oriented sliders, which can option-
ally contain text input fields for entering exact values. A slider allows the user
to set or display the values of the variables that fall within a predefined range.
See Creating a Controls Box with Sliders on page 182 for more information.

• Dialog Box — A blocking (modal) or nonblocking (modeless) dialog box con-
taining a text input field and button box with control buttons. See Creating
Dialog Boxes on page 193 for more information.

• Drawing Box — A box that displays PV-WAVE graphics. See Creating a
Drawing Area on page 183 for more information.

root window

layout 1

w 1 w 2 w 3 w 4 w 5 layout 2

w 6 w 7 w 8 w 9 w 10

168 Application Developer’s Guide

• File Selection Box — Displays the contents of directories and lets the user
select files. See Creating a File Selection Widget on page 196 for more
information.

• Layout Widget — A “container” used to hold other widgets in a specific
arrangement. Types of arrangements include: row/column, form, and bulletin
board. Keywords are used to select the type of layout and the orientation, spac-
ing, and sizing of the widgets in the layout. By default, a layout widget is
created when WAVE Widgets is initialized with the WwInit command. See
Creating and Arranging WAVE Widgets on page 165 for more information.

• List Box — A scrolling list that allows users to select one or more items from
a group of choices using the mouse. An additional callback can be defined for
the default action, activated with a double-click. See Creating a Scrolling List
on page 189 for more information.

• Main Window — A top-level (window manager) window and layout widget.
By default, the WwInit function creates a top-level widget and a layout widget.
WwMainWindow lets you create additional top-level and layout widgets.

• Menu Bar — A series of menu buttons. See Creating and Handling Menus on
page 173 for more information.

• Message Box — A popup message box containing a text message, which can
be blocking or nonblocking. See Creating Popup Messages on page 190 for
more information.

• Option Menu — A menu button that reflects the currently selected menu item.
See Creating and Handling Menus on page 173 for more information.

• Popup Menu — A menu that appears when the user presses the right mouse
button over a parent widget. See Creating and Handling Menus on page 173
for more information.

• Radio Box — A specified number of rows or columns of labeled toggle but-
tons. See Creating a Radio Box on page 181 for more information.

• Table Widget — An editable 2D array of cells similar to a spreadsheet. See
Creating a Table Widget on page 200 for more information.

• Text Area — A static text label, a text entry field, or a full window editor. See
Creating a Text Widget on page 186 for more information.

• Tool Box — An array of graphic buttons (icons) arranged in a specified num-
ber of columns or rows. See Creating a Button Box and a Tool Box on page 179
for more information.

 169

Arranging Widgets in a Layout

A layout widget is like the canvas on which other widgets are drawn in whatever
arrangement you specify. All types of widgets, except the root window and popup
widgets, must be related to a layout widget.

The WwInit function creates a main window and one layout widget by default.
Additional layout widgets can be created with the WwLayout function.

A layout widget allows three types of basic arrangements:

• Row/column layout

• Bulletin Board layout

• Form layout

In addition, layout widgets can be embedded within other layout widgets to create
more complex GUIs.

Row/Column Layout

Row/column is the default layout. A row/column layout consists of widgets
arranged either horizontally or vertically depending on the keywords used. The fol-
lowing commands create a row/column layout, where the widgets are horizontally
aligned, with five pixels of space between each widget and widget borders three
pixels wide. The result is shown in Figure 5-7.

top=WwInit(’ww_ex3’, ’Examples’, layout, $
/Horizontal, Spacing=5, Border=3)

btn1=WwButtonBox(layout,’Button 1’, ’CB’)

btn2=WwButtonBox(layout,’Button 2’, ’CB’)

btn3=WwButtonBox(layout,’Button 3’, ’CB’)

status=WwSetValue(top, /Display)

WwLoop

Figure 5-7 Horizontally aligned layout with three buttons (Motif style).

layout

170 Application Developer’s Guide

Bulletin Board Layout

To create a bulletin board layout, the WwInit or WwLayout function is used with
the Board keyword.

Each widget is positioned on the bulletin board with the Position keyword, which
specifies x and y coordinates. By default, widgets are placed in the upper-left corner
of the bulletin board (coordinates x=0, y=0).

For example, the following calls position button widgets on the bulletin board
called bboard. Note that the positions of the buttons are specified with the Posi-
tion keyword. The result is shown in Figure 5-8.

top=WwInit(’ww_ex4’, ’Examples’, bboard, /Board)

btn1=WwButtonBox(bboard,’Button 1’, ’CB’, Position=[0,0])

btn2=WwButtonBox(bboard,’Button 2’, ’CB’, Position=[0,50])

btn3=WwButtonBox(bboard,’Button 3’, ’CB’, Position=[0,100])

status=WwSetValue(top, /Display)

WwLoop

Figure 5-8 Bulletin board layout (Motif style).

Form Layout: Attachments

On a form layout, widgets are “attached” to one another. These attachments are
specified with the keywords Top, Bottom, Right, and Left. You can specify widget
attachments in relation to the parent widget or in relation to other child widgets.
Many combinations of attachments are possible, and it is best to experiment with
the attachment keywords to produce the desired effect.

For example, the following call creates a form layout called ctrls:

ctrls=WwLayout(top, /Form)

 171

If no attachment keyword is specified, a child widget bbox1 is placed in the upper
left corner of the layout. For example:

bbox1=WwButtonBox(ctrls, ’Click Here’, ’buttonCB’)

The result is illustrated in the following figure:

The next call places another button in the layout. This attachment places the top of
bbox2 on the bottom of bbox1, as shown in the following figure.

bbox2=WwButtonBox(ctrls, ’Click Here’, ’buttonCB’, Top=bbox1)

The third button is attached to the right edge of the first button, bbox1, as shown
in the following figure.

bbox3=WwButtonBox(ctrls, ’Click Here’, ’buttonCB’, Left=bbox1)

Finally, a fourth button is attached to bottom of the third button and to the left of
the second button, as shown in the following figure.

bbox4=WwButtonBox(ctrls, ’Click Here’, $
’buttonCB’, Left=Box2, Top=bbox3)

bbox1

ctrls (form)

bbox1

bbox2

ctrls (form)

bbox1

bbox2

bbox3

ctrls (form)

172 Application Developer’s Guide

Figure 5-9 summarizes the general effect of widget attachments specified for the
widget Child_2 in relation to the widget Child_1.

You can also specify attachment keywords with a value of one (Keyword = 1). This
positions widgets in relation to the parent layout. For example:

bbox1=WwButtonBox(layout, ’Click Here’, ’buttonCB’, /Bottom)

This call attaches the widget bbox1 to the bottom of the parent layout widget
layout. These default attachments are always specified in relation to the parent
widget.

Figure 5-10 summarizes the effect of some basic attachment keyword defaults
(Keyword = 1).

Figure 5-9 Effects of attachment keywords specifying attachments in relation to child
widgets.

bbox1

bbox2

bbox3

bbox4

ctrls (form)

Form Form

Form Layout Form Layout

Child_1

Child_2

Child_2

Child_1

Child_1 Child_2 Child_2 Child_1

Top = Child_1 Bottom = Child_1

Left = Child_1 Right = Child_1

Layout Layout

 173

Figure 5-10 Effects of the default attachments for a single child widget.

Creating and Handling Menus
This section discusses the three basic types of WAVE Widgets menus:

• Menu bar

• Popup menu

• Option menu

Menu Bar

Figure 5-11 A menu bar. On the left no menu items are selected. On the right, the Fonts
menu is selected, and an additional pullright menus is displayed.

/Top

/Bottom

/Left

/Right

Form

Form

Form

Form

Child

Child

Child

Child

Layout Layout

Layout Layout

174 Application Developer’s Guide

A menu bar is a set of buttons that activate menus. When you select a menu button
with the mouse, a pulldown menu appears with a set of menu items. A menu item
can itself activate another menu, called a pullright menu, as shown in Figure 5-11.

The WwMenuBar function is used to create a menu bar. This function takes two
parameters:

menubar = WwMenubar(parent, items)

NOTE WwMenuBar can only occur once per layout widget on Windows.

The returned value, menubar, is the ID of the newly created menu bar widget. The
parent parameter is the widget ID of the parent widget, often the ID of the layout
widget. The items parameter is an unnamed structure containing all of the menu
information. For detailed information on the items parameter, see Defining Menu
Items with Unnamed Structures on page 176.

Popup Menu

Figure 5-12 Simple popup menu, activated over a drawing area parent widget (Motif style).

parent widget

popup menu

 175

A popup menu, shown in Figure 5-12, is a menu that appears when you press the
MENU mouse button (usually the right button) while the cursor is positioned inside
the menu’s parent widget.

The WwPopupMenu function is used to create a popup menu. This function takes
two parameters:

menubar = WwPopupMenu(parent, items)

The parent parameter is the widget ID of the parent widget. The items parameter is
an unnamed structure containing all of the menu information. For detailed infor-
mation on the items parameter, see Defining Menu Items with Unnamed Structures
on page 176.

Option Menu

Figure 5-13 On the left are three option menus, Fonts, Types, and Sizes. Each one displays
the current selection. On the right, the Fonts menu is selected.

An option menu, shown in Figure 5-13, is a menu button that displays the current
selection. When the user presses the appropriate mouse button (usually the left but-
ton for Motif) over an option menu button, a menu appears. After the user makes a
selection, the option button’s text changes to reflect the current selection.

The WwOptionMenu function is used to create an option menu. This function takes
three parameters:

options = WwOptionMenu(parent, label, items)

The parent parameter is the widget ID of the parent widget. The label parameter is
a text string containing a label for the menu. The items parameter is an unnamed
structure containing all of the menu information. For details on the items parame-
ter, see Defining Menu Items with Unnamed Structures on page 176.

176 Application Developer’s Guide

Menu Callbacks

When an active menu item is selected, the menu callback is called with the menu’s
widget ID as the first parameter and the menu item index (1...n) as the second
parameter.

For example, here is a very simple callback routine called MenuCB, which prints
a message depending on which menu button is selected.

PRO MenuCB, wid, which

CASE which OF

 1: PRINT,’First Button Selected’

 2: PRINT,’Second Button Selected’

 3: PRINT,’Third Button Selected’

ENDCASE

END

Defining Menu Items with Unnamed Structures

Each of the menus discussed above takes a parameter (items) that contains the
menu information. This parameter is defined as an unnamed structure.

An unnamed structure has the following general definition:

x = {, tag_name1: tag_def1, tag_namen: tag_defn}

For detailed information on unnamed structures, see the section the section
Creating Unnamed Structures in Chapter 6 of the PV-WAVE Programmer’s Guide.

The following tag names and tag definitions can be used in the unnamed structure
used to define menu items. For an example, see the next section.

• title:'name' — (optional) Specifies a title for the menu.

• callback:'clbkname' — The name of the callback routine to be executed
when an active menu button is selected. Always place the callback name before
the active button’s definition. The active items, which are described below,
include button, icon, toggle, and menubutton.

• button:'labelname'— The name of a pushbutton on the menu. A pushbut-
ton is a button that calls a callback when selected.

• icon:'bitmap_filename'— Creates an iconic (graphic) pushbutton. The bit-
map filename is the full name of a file containing the icon’s bitmap.

• toggle:'labelname' — Creates a “toggle” type of button. A toggle button
contains a small box to the left of the label. When the button is selected, the
box is highlighted. When the button is not selected, the box is not highlighted.

 177

• menubutton:'labelname'— The name of a menu button on the menu bar,
or in the menu for pullright menus.

• menu:structure — An unnamed structure that defines the contents of menus.
For a simple pulldown menu, the structure has only one level. Include pullright
menus by embedding additional structures in the top-level structure.

• separator:value — Separates the previous from the next menu item. Pos-
sible values are:

• current:index (1 – n) — Used only for the option menu. Specifies the item
to be selected as current when the option menu is created. This tag must be the
last one in the list of tags in the structure definition.

Modifying Menu Items

WwMenuItem lets you dynamically update menus that have already been created.
All menu items are placed in a parent menu pane, and the widget ID of the appro-
priate menu pane can be acquired using the Menus keyword of the WwMenuBar,
WwPopupMenu, or WwOptionMenu function. For details on the WwMenuItem
function, see WwMenuItem Function on page 298.

Example

The following example shows the code used to create the items for the menus
shown in Figure 5-14. The menu bar contains three menus: Fonts, Size, and Icons.
The contents of these menus are defined by the unnamed structure, menus, which
is then passed to the WwMenuBar function. Note that the first menu, Fonts, con-
tains a pullright menu called Adobe. This is defined as a separate unnamed
structure embedded in the top-level structure.

Values for Motif Separator

0 No line

1 Single line

2 Double line

178 Application Developer’s Guide

Figure 5-14 Menu bar containing three menus. Menus are displayed when the user presses
the SELECT mouse button (usually the left button) over the menu name. The menus for each
button are shown below the menu bar.

top=WwInit(’ww_ex5’, ’Examples’, layout)

menus ={,callback:’MenuCB’,$

menubutton:’Fonts’,$

; Create menu button “Fonts” on the menu bar.
menu:{,callback:’MenuCB’,$

menubutton:’Adobe’,$

; A new menu is created by embedding another unnamed structure
; in the top-level structure. The menubutton tag creates a pullright
; menu called “Adobe”. The pullright menu contains the toggle
; buttons “Normal”, “Bold”, and “Italic”.

menu:{,callback:’MenuCB’,$

toggle:’Normal’,$

toggle:’Bold’,$

toggle:’Italic’},$

button:’Helvetica’,$

button:’Courier’},$

; Create two more pushbuttons on the Fonts menu.
menubutton:’Size’,$

; Create a second menu button “Size” on the menu bar.
menu:{,callback:’MenuCB’,$

button:’8’,$

button:’10’,$

button:’12’},$

 179

; Create three pushbuttons on the “Size” menu.
menubutton:’Icons’,$

; Create a third menu button “Icons” on the menu bar.
menu:{,callback:’MenuCB’,$

pushpin:0,$

; Do not display a pushpin.
title:’Help’,$

; Create a title for the Icons menu.
icon:getenv(’WAVE_DIR’)+ $

’/xres/wxbm_btn_help_search’,$

icon:getenv(’WAVE_DIR’)+ $

’/xres/wxbm_btn_help_toc’,$

icon:getenv(’WAVE_DIR’)+ $

’/xres/wxbm_btn_help_topics’,$

; Place four icon buttons on the Icons menu. Full pathnames to
; bitmap images are given to produce the icon pictures.

separator:1,$

; Insert a single-line separator.
icon:getenv(’WAVE_DIR’)+ $

’/xres/wxbm_btn_help_quit’}}

; Place the last icon below the line.
bar = WwMenuBar(layout, menus)

; The call to WwMenuBar creates the menu bar. The ‘layout’
; parameter is the widget ID of the parent layout widget. For
; example: layout = WwLayout(top, /Horizontal, /Spacing=5).
; The value of the ‘menus’ parameter is the multi-level unnamed
; structure defined above.

status=WwSetValue(top, /Display)

WwLoop

Creating a Button Box and a Tool Box
A button box and a tool box serve similar functions — both trigger specific actions
when the user clicks on an item. A button box contains an array of labeled buttons,
organized in rows or columns. A tool box contains an array of icons (graphical
buttons), also arranged in rows or columns.

Buttons and icons are usually used to apply changes, confirm decisions, display
new windows, or start new applications. When the user clicks on a button or icon,
its three-dimensional appearance inverts, so that it looks like the button has been
depressed. When the button or icon is released, it returns to its normal appearance.

180 Application Developer’s Guide

Button Box Example

Figure 5-15 A button box containing five buttons.

A button box is created with the WwButtonBox function. In the following example
layout is the parent widget. ButtonCB is the name of the procedure that is exe-
cuted when a button is selected. The buttons are arranged horizontally and spaced
20 pixels apart. WwButtonBox is passed two parameters — the button box widget
ID and a value that corresponds to the selected button. The result is shown in Figure
5-15.

top=WwInit(’ww_ex6’, ’Examples’, layout)

labels = [’Quit’,’Dialog’,’Message’, $
’FileSelection’, ’Command’]

bbox=WwButtonBox(layout, labels,’ButtonCB’,$
/Horizontal, Spacing=20)

status=WwSetValue(top, /Display)

WwLoop

Tool Box Example

Figure 5-16 A toolbox containing four icons.

A tool box is created with the WwToolBox function. This example creates a tool
box containing four icons, arranged in two columns, which are specified in the
string array pixmaps. DrawnCB is the name of the callback routine (not shown)
that is executed when a button is selected. The result is shown in Figure 5-16.

 181

top=WwInit(’ww_ex7’, ’Examples’, layout)

pixmaps = [getenv(’WAVE_DIR’)+’/xres/wxbm_btn_help_search’,$

 getenv(’WAVE_DIR’)+’/xres/wxbm_btn_help_toc’,$

 getenv(’WAVE_DIR’)+’/xres/wxbm_btn_help_topics’,$

 getenv(’WAVE_DIR’)+’/xres/wxbm_btn_help_quit’]

; Create a variable “pixmaps” that contains the paths to the graphics
; files used for the icons.

dbox=WwToolBox(layout, pixmaps, ’DrawnCB’, /Vertical, $
Spacing=20, Measure=2)

; The tool box is created with four buttons, spaced 20 pixels apart,
; and arranged in two columns.

status=WwSetValue(top, /Display)

WwLoop

Creating a Radio Box

Figure 5-17 A radio box (Motif style).

A radio box contains a set of buttons, usually used to set or display the state of a
variable, process, or action. Radio box buttons can be either exclusive or nonexclu-
sive. If the buttons are exclusive, only one can be selected at a time (like the buttons
on a car radio). If the buttons are set to nonexclusive, any number of them can be
selected at once. When a button is selected, its appearance changes to reflect this.
Radio box buttons can also be labeled.

182 Application Developer’s Guide

Example

A radio box is created with the WwRadioBox function. In this example, the key-
word Nofmany specifies that the buttons are to be nonexclusive. The Border
keyword specifies the thickness, in pixels, of the border around the buttons. The
Spacing keyword specifies the space, in pixels, between buttons. RadioCB is the
name of a callback routine that is executed when a button is selected. The result is
shown in Figure 5-17.

top=WwInit(’ww_ex8’, ’Examples’, layout)

labels=[’System’, ’Owner’, ’Group’]

; Create three labels for the radio buttons.

rbox=WwRadioBox(layout, labels, ’RadioCB’, $
/Vertical, Border=2, Spacing=20, /Nofmany)

; Create the radio button box.

status=WwSetValue(top, /Display)

WwLoop

Creating a Controls Box with Sliders

Figure 5-18 A controls box with three sliders (Motif style).

A controls box is a box containing “sliders”. A slider can be used to change
numerical values interactively by positioning the pointer on the slider, pressing the
left mouse button, and dragging. A controls box can have any number of sliders
oriented either horizontally or vertically in a specified number of rows or columns.
In addition, a slider can have an input text field in which the user can enter an exact
value.

 183

A controls box is created with the WwControlsBox function.

Example
In this example, a controls box containing three sliders, labeled Pressure, RPM, and
Temperature, is created. They are arranged vertically. The keyword Text creates a
text input field for each slider. Whenever a slider is moved, the callback routine
named SliderCB is executed. The result is shown in Figure 5-18.
top=WwInit(’ww_ex9’, ’Examples’, layout)

labels=[’Pressure’,’RPM’,’Temperature’]

; Create the slider labels.
ranges=[0,100,2000,4000,50,150]

; Specify the ranges of each slider.
controls = WwControlsBox(layout, labels, $

ranges, ’SliderCB’, /Vertical, /Text, $
Foreground=’red’, Background=’yellow’, Basecolor=’blue’)

; Create the controls box.
status=WwSetValue(top, /Display)

WwLoop

Creating a Drawing Area

Figure 5-19 A drawing area (Motif style).

184 Application Developer’s Guide

A drawing area is a window in which an application can display plots or images.
Both horizontal and vertical scroll bars are attached to the drawing area. The scroll
bars can be used to pan across a drawing that is too large to fit in the window. A
drawing area is created with the WwDrawing function.

Whenever a drawing area widget is created, WwDrawing automatically associates
the drawing area with a PV-WAVE window index (see the WINDOW command in
the PV-WAVE Reference for information on the window index). Then, the drawing
area callback is executed and the graphics are displayed. The callback is also exe-
cuted on systems that do not provide backing store for when the drawing window
is obscured and then redisplayed.

Example 1: Basic Drawing Area

In this example, a drawing area window is created. The parent widget is called
layout, the window index of the PV-WAVE window used is 1. Note that the size
of the drawing area is 256 x 256, while the total size of the drawing is 512 x 512
(the image is larger than the actual drawing area). Scroll bars are provided for mov-
ing the image inside the drawing area. The result is shown in Figure 5-19.

To run this example, enter the callback procedure in a file and compile it with the
.RUN command. Then enter the widget commands at the WAVE> prompt.

Callback Procedure

PRO DrawCB, wid, data

COMMON draw, img

PRINT, ’Draw’

TV, img

END

Widget Commands

top=WwInit(’ww_ex10’, ’Examples’, layout)

COMMON draw, img

LOADCT, 5, /Silent

img=BYTARR(512,512)

Openr,1, !Data_Dir + ’head.img’

READU,1,img

CLOSE, 1

draw=WwDrawing(layout, 1, ’DrawCB’, [256,256], [512,512])

status=WwSetValue(top, /Display)

WwLoop

 185

Example 2: User Resizes the Drawing Area

This example demonstrates how the drawing area can be dynamically resized when
the user resizes the main window.

To run this example, enter the code into a procedure file, and execute it with the
.RUN command.

PRO DrawCB, wid, index

COMMON Trdraw, draw, area, widx

print, ’Draw’, !D.x_vsize, !D.y_vsize, index, widx

 x = indgen(100)

 plot, x

END

PRO Testresize

COMMON Trdraw, draw, area, widx

; Initialize toolkit, create form layout
top = WwInit(’testresize’,’Test’,layout, $

Background=’Green’, /Form)

Create drawing area

widx = -1

draw = WwDrawing(layout, widx, ’DrawCB’, $
[256, 256], [512, 512], /Noscroll, $
Area = area, /Right, /Left, /Top, /Bottom)

status = WwSetValue(top, /Display)

WtLoop

END

Example 3: Resizing the Drawing Area Programmatically

This example demonstrates how to resize the drawing area programmatically using
WwSetValue.

To run this example, enter the code into a procedure file, and execute it with the
.RUN command.

PRO ButtonCB, wid, which

COMMON Test, draw, top, size

CASE which OF

 1: BEGIN

186 Application Developer’s Guide

 size = 600

 status = WwSetValue(draw, [600, 600])

END

2: BEGIN

 erase, 0

 tvscl, dist(size)

END

ENDCASE

END

; Draw the image.

PRO DrawingCB, wid, which

COMMON Test, draw, top, size

tvscl, dist(size)

END

PRO Testdraw

COMMON Test, draw, top, size

size = 400

top = WwInit(’testdraw’, ’Testdraw’, layout, $
/Vertical, Title = ’Test Drawing’, Position = position)

; Create Pushbutton.

b = [’Resize’,’Redraw’]

pushb = WwButtonBox(layout, b, ’ButtonCB’, $
/Vertical, Border = 0, Spacing = 10, Position = [10, 400])

; Create Drawing.

drawing_surf = WwDrawing(layout, 1, $
’DrawingCB’, [400, 400], [400, 400], $
Area = draw, Position = [0, 0])

status = WwSetValue(top, /Display)

WwLoop

; Waiting for callbacks.

END

Creating a Text Widget
The WwText function can be used to create three kinds of text widgets:

• A single-line read-only label.

• A single-line editable text field, used for user input.

 187

• A multi-line text window that can be read-only or editable.

Horizontal and vertical scroll bars allow the user to scroll through the multi-line
text window.

Single-line Label (Read-only)

To create a single-line read-only text label, use the WwText function with the Label
keyword. For an example, see Static Label and Editable Text Field Example below.

Single-line Editable Text Field

Figure 5-20 An editable text field with a label.

To create a single-line editable text field, use the WwText function. This text wid-
get is used primarily for applications that require the user to enter a value or a
string. WwText returns a string, which can be passed to the callback for processing.

Static Label and Editable Text Field Example

This example creates an editable text field with a label. The left edge of the text
field widget is attached to the right edge of the label widget. The result is shown in
Figure 5-20.

top=WwInit(’ww_ex11’, ’Examples’, layout, /Form)

; Initialize WAVE Widgets and create the form layout widget.
label=WwText(layout, /Label, Text=’This is Label’)

; Create the label widget.
text=WwText(layout, ’TextCB’, Cols=40, left=label)

; Create the single-line text field widget, attaching it to the
; right edge of the label widget.

status=WwSetValue(top, /Display)

WwLoop

editable text fieldread-only label

188 Application Developer’s Guide

Multi-line Text Window

Figure 5-21 A multi-line text window (Motif style).

To create a multi-line text window, use the WwText function with the Col and Rows
keywords to specify the height and width of the text area. If you use the Read key-
word, the text area is read-only. If this keyword is not used, then the user can edit
the text using the standard editing keys on the keyboard or the mouse (for example
cut and paste).

Example

This example creates a multi-line, read-only text window 40 columns by 20 rows,
and displays the text from the file Tips. The result is shown in Figure 5-21.

top=WwInit(’ww_ex12’, ’Examples’, layout)

filename = getenv(’WAVE_DIR’)+ ’/Tips’

text=WwText(layout, ’TextCB’, /Read, $
File=filename, Cols=40, Rows=20)

status=WwSetValue(top, /Display)

WwLoop

 189

Creating a Scrolling List

Figure 5-22 A scrolling list (Motif style).

A scrolling list allows the user to select one or more items from a list of items. The
“items” in a scrolling list are text strings, defined in a string array. Scroll bars are
provided for lists that are too long to display in the scrolling list window.

Use the WwList function to create a scrolling list.

Selection Mode
You can create a scrolling list in one of two selection modes: single or multiple
selection.

Single Selection Mode

This is the default selection mode. Single selection means that the user can select
one item at a time. To select an item, the user positions the pointer over the item
and clicks the SELECT mouse button, usually the left button. If the user selects
another item, the first item is deselected. This then executes the selectCallback
routine.

If the user double-clicks on an item, the defaultCallback routine is executed.

Multiple Selection Mode

In multiple selection mode, the user can select more than one item from the list.
The first item is selected with left mouse button. Additional items can then be
selected using left mouse button. To deselect an item, the user clicks the left mouse
button on it.

190 Application Developer’s Guide

Scrolling List Callbacks
Two callbacks are used with the WwList function. The first one, selectCallback, is
called whenever the user selects an item (single-clicks on it). The second callback,
defaultCallback, is called when the user double-clicks on an item. This callback is
called “default” because it usually executes a default action. For example, the Motif
file selection widget operates in this manner. When the user clicks on a file name,
the text is placed in a text input field. When the user double-clicks on a file name,
the file is selected, the selection widget is dismissed, and the defaultCallback is
called. For an illustration of the Motif file selection widget, see Creating a File
Selection Widget on page 196.

Example

The following example creates a scrolling list containing the names of holidays.
The Visible keyword specifies the number of items that are displayed in the scroll-
ing list at a time. The Multi keyword sets the scrolling list to the multiple selection
mode. The result is shown in Figure 5-22.
top=WwInit(’ww_ex13’, ’Examples’, layout)

items = [’PresidentsDay’, ’St.PatricksDay’,$
’Easter’, ’MemorialDay’, ’4th of July’,$
’LaborDay’, ’Halloween’, ’Thanksgiving’,$
’Hanukkah’, ’Christmas’, ’New Years Eve’]

; Define the list of items.
list=WwList(layout, items, ’ListCB’,$

’DefaultCB’, Visible=7,/Multi, Left=rbox, Top=controls)

; Create a scrolling list widget that displays the list of holidays.

status=WwSetValue(top, /Display)

WwLoop

Creating Popup Messages

 191

Figure 5-23 A pop-up message (Motif-style).

A popup message is a window that contains some text. Usually it informs the user
of a condition — a warning or the confirmation of a choice, for instance — then is
dismissed when the user clicks on the OK button. No other interaction is required.

The WwMessage function is used to create message windows.

NOTE Message windows are popup widgets. This means that they must have an
intermediate widget, such as a button, as their parent. The popup widget appears
after the user selects the intermediate button. See Message Box Example on page
192 for more information.

Blocking vs. Nonblocking Windows

A message window can be blocking or nonblocking. Blocking means that no other
user action can occur until the message or dialog is confirmed — user clicks on OK
— or the message box is dismissed. The blocking window “blocks” the user from
performing other actions as long as the window remains on the screen.

A nonblocking message window can remain on the screen while the user performs
other actions. The nonblocking dialog or message does not “block” the user from
performing other actions.

The WwMessage function has a Block and a Nonblock keyword. Use the Block key-
word to create a blocking window and the Nonblock keyword to create a
nonblocking window.

Types of Message Windows

You can create four types of message boxes. These types are available only with
the Motif message widget. They are shown in Figure 5-24.

• Information message — Specified with the Info keyword.

• Working message — Specified with the Working keyword.

• Warning message — Specified with the Warning keyword.

• Question message — Specified with the Question keyword.

192 Application Developer’s Guide

Figure 5-24 The four types of message windows. Clockwise from upper-left: Information,
Working, Question, and Warning.

Default Message Box Buttons

By default, three buttons appear along the bottom edge of message windows. They
are used to confirm or cancel the message.

Motif Buttons

OK — Confirms the message.

Cancel — Cancels the message.

Help — Not supported.

Message Box Example

This example creates a row of buttons you can click on to display the four different
types of Motif message boxes. To run the example, enter the callback procedures
in a file and compile them with the .RUN command. Then enter the widget com-
mands at the WAVE> prompt. The result is shown in Figure 5-23.

Callback Routines

PRO MessageOK, wid, data

print,’Message OK’

END

PRO MessageCancel, wid, data

print,’Message Cancel’

 193

END

PRO MbuttonCB, wid, data

case data of

 1: message=WwMessage(wid, $
’This is a Test Message’,’MessageOK’, $
’MessageCancel’,TITLE=’Information’)

 2: message=WwMessage(wid, $
’This is a Test Message’,’MessageOK’, $
’MessageCancel’, /Working, $
TITLE=’Working’)

 3: message=WwMessage(wid, $
’This is a Test Message’,’MessageOK’, $
’MessageCancel’, /Warning, TITLE=’Warning’)

 4: message=WwMessage(wid, $
’This is a Test Message’,’MessageOK’, $
’MessageCancel’, /Question, TITLE=’Question’)

ENDCASE

END

Widget Commands

top=WwInit(’ww_ex14’, ’Examples’, layout)

button=WwButtonBox(layout, [’Information’, $
’Working’, ’Warning’, ’Question’], ’MbuttonCB’)

status=WwSetValue(top, /Display)

WwLoop

Creating Dialog Boxes

194 Application Developer’s Guide

Figure 5-25 A dialog box (Motif-style).

A dialog box requires user interaction. For instance, the users may enter some text
in the dialog box, then “accept” the entry by clicking on a button. If the users do
not wish to apply the change to the dialog box, they can click on another button to
dismiss it.

The WwDialog function creates dialog boxes.

A Dialog is a Popup Widget

Dialog boxes are popup widgets. This means that they must have an intermediate
widget, such as a button, as their parent. The popup widget appears after the user
selects this intermediate button. See Dialog Box Example on page 195 for more
information.

Blocking vs. Nonblocking Windows

A dialog window can be blocking or nonblocking. Blocking means that no other
user action can occur until the dialog is confirmed — the user clicks on OK or Con-
firm — or until the dialog box is dismissed. The blocking window “blocks” the user
from performing other actions as long as the window remains on the screen.

A nonblocking dialog can remain on the screen while the user performs other
actions. The nonblocking dialog does not “block” the user from performing other
actions.

The WwDialog function has a Block and a Nonblock keyword. Use the Block key-
word to create a blocking window and the Nonblock keyword to create a
nonblocking window.

Default Dialog Box Buttons

By default, three buttons appear along the bottom edge of dialog boxes. These but-
tons are used to confirm or cancel the dialog box.

Motif Buttons

OK — Confirms the input in the dialog.

Cancel — Cancels the dialog.

Help — Not supported.

 195

Dialog Box Example

The following example creates a button that you can click on to display a dialog
box. To run the example, enter the callback procedures in a file and compile them
with the .RUN command. Then enter the widget commands at the WAVE> prompt.

The “Type something” string is a label for the text input field. The DialogOK
parameter is the name of a callback that is executed when the user clicks on the OK
button. The DialogCancel parameter is the name of a callback that is executed
when the Cancel button is selected. The result is shown in Figure 5-25.

Callback Procedures

PRO DbuttonCB, wid, data

select=WwDialog(wid,’Type something:’,$
’DialogOK’, ’DialogCancel’, Title=’Type’)

END

PRO DialogOK, wid, text

PRINT,’Dialog OK’

value = WwGetValue(text)

PRINT, value

END

PRO DialogCancel, wid, data

PRINT,’Dialog Cancel’

END

Widget Commands

top=WwInit(’ww_ex15’, ’Examples’, layout)

button=WwButtonBox(layout, ’Dialog Box’, ’DbuttonCB’)

status=WwSetValue(top, /Display)

WwLoop

196 Application Developer’s Guide

Creating a File Selection Widget

Figure 5-26 File selection widget (Motif style).

A file selection widget lets the user move through directories and select files. File
selection widgets are created with the WwFileSelection function.

A File Selection Widget is a Popup Widget

File selection widgets are popup widgets. This means that they must have an inter-
mediate widget, such as a button, as their parent. The popup widget appears after
the user selects this intermediate button. See File Selection Example on page 197
for more information.

Blocking vs. Nonblocking Windows

A file selection window can be blocking or nonblocking. Blocking means that no
other user action can occur until the message or dialog is confirmed (user clicks on

 197

OK, Apply, Cancel, or some other confirming button). The blocking window
“blocks” the user from performing other actions as long as the window remains on
the screen.

A nonblocking file selection window can remain on the screen while the user per-
forms other actions. The nonblocking window does not “block” the user from
performing other actions.

The WwFileSelection function has a Block and a Nonblock keyword. Use the Block
keyword to create a blocking window and the Nonblock keyword to create a non-
blocking window.

File Tool Contents

The file tool lets the user move through directories, view their contents, and select
files. It consists of:

• A text field where the user enters a directory name to display subdirectories and
files.

• A list of directories and files.

• A text input field for displaying or editing a filename.

• The buttons: OK, Filter, Cancel, and Help.

See Figure 5-26 for an example Motif file selection box.

File Selection Example

The following example creates a button that you can click on to display a file selec-
tion widget. To run the example, enter the callback procedures in a file and compile
them with the .RUN command. Then enter the widget commands at the WAVE>
prompt.

FileOK and FbuttonCB are names of callback routines. The Title keyword
specifies a name for the search tool. The result is shown in Figure 5-26.

Callback Procedures

PRO FbuttonCB, wid, data

file = WwFileSelection(wid,’FileOK’,$
’FileCancel’, Title=’Search’)

END

PRO FileOK, wid, shell

value = WwGetValue(wid)

198 Application Developer’s Guide

PRINT, value

status = WwSetValue(shell, /Close)

END

Widget Commands

top=WwInit(’ww_ex16’, ’Examples’, layout)

button=WwButtonBox(layout, ’File Tool’, ’FbuttonCB’)

status=WwSetValue(top, /Display)

WwLoop

Creating a Command Widget

Figure 5-27 A command widget (Motif style).

A command widget is used for command entry and provides a built-in command
history mechanism. The command widget includes a text input field, a label for the
text input field, and a command history window.

The WwCommand function is used to create a command widget. Use
WwGetValue in the callback routine to obtain the text strings entered from the
command widget.

The user types a command in the text input field and presses <Return> to execute
the command. The command is then added to the end of the command history win-

Command History

Label

Text Input Field

Window

 199

dow. When the user clicks on a command in the command history window, the
command is displayed in the text entry field, ready to be executed. The user can
double-click on a command in the command history list to execute it directly. This
also adds the command to the end of the list.

NOTE Command widgets are popup widgets. This means that they must have an
intermediate widget, such as a button, as their parent. The popup widget appears
after the user selects this intermediate button. See the following Example section
for more information.

Example

The following example shows a simple WwCommand call. To run the example,
enter the callback procedures in a file and compile them with the .RUN command.
Then enter the widget commands at the WAVE> prompt.

CommandOK is a callback that is executed when the user enters the command and
presses <Return>, or double-clicks the command from the history list. Command-
Done is a callback that is executed when the user quits the command window. The
Title keyword specifies a name for the command window, and Position specifies its
location on the screen. The result is shown in Figure 5-27.

Callback Procedures

PRO CbuttonCB, wid, data

command = WwCommand(wid, ’CommandOK’, ’CommandDone’, Title= $
’Command Entry Window’, Position=[300,300])

END

PRO CommandOK, wid, shell

value = WwGetValue(wid)

; Obtain the string entered in the text input field.
PRINT, value

END

PRO CommandDone, wid, shell

status = WwSetValue(shell, /Close)

END

Widget Commands

top=WwInit(’ww_ex17’, ’Examples’, layout)

button=WwButtonBox(layout, ’Command’, ’CbuttonCB’)

status=WwSetValue(top, /Display)

WwLoop

200 Application Developer’s Guide

Creating a Table Widget

Figure 5-28 A table widget.

A table widget is used for displaying and editing a 2D array of cells. The example
table shown in Figure 5-28 contains scroll bars which can be used to display cells
that are currently hidden.

The WwTable function is used to create a table widget. A variety of selection and
editing methods are available within a table created with WwTable. For detailed
information on the many keywords and options of WwTable and the code used to
produce Figure 5-28, see WwTable Function on page 339.

 201

Setting Colors and Fonts
Colors and fonts are common attributes of all WAVE Widgets. Keywords are pro-
vided for setting these attributes.

Setting Colors

Many WAVE Widgets provide keywords for setting colors. The keywords include:
Basecolor, Background, and Foreground.

Basecolor — The color of the “container” or “box” for the following widgets: But-
tonBox, RadioBox, ToolBox, and ControlsBox.

Background — The color of a button.

Foreground — The color of the text on a button.

Figure 5-29 illustrates the use of each color keyword.

Figure 5-29 How the color keywords are applied.

The color keywords have the form:

Keyword = ’colorname’

where colorname is the name of an X library color. For example:

Background = ’Skyblue’

The names of colors can be found in these files on most UNIX and most OpenVMS
systems:

(UNIX) /usr/lib/X11/rgb.txt

(OpenVMS) SYS$MANAGER:DECW$RGB.COM

On Windows, the file containing the color names is:

(Windows) <maindir>\wave\lib\std\windows\rgb.txt

where <maindir> is the main PV-WAVE directory.

Apply Cancel

Basecolor

Foreground
Background

202 Application Developer’s Guide

NOTE For Windows, this file is a reference file only. Any modifications made to
this file will not affect the colors used by PV-WAVE.

If you cannot find these color files on your system, see your System Administrator.

Predefined Colors for Windows Systems

In addition to the colors listed in the rgb.txt file, you may use any of the follow-
ing predefined Windows system colors as your widget colors.

Windows System Colors Corresponding Widget Color

COLOR_3DDKSHADOW Dark shadow for 3D display elements.

COLOR_3DFACE,
COLOR_BTNFACE

Face color for 3D display elements.

COLOR_3DHILIGHT,
COLOR_3DHIGHLIGHT,
COLOR_BTNHILIGHT,
COLOR_BTNHIGHLIGHT

Highlight color for 3D display elements (for
edges facing the light source).

COLOR_3DLIGHT Light color for 3D display elements (for edges
facing the light source).

COLOR_3DSHADOW,
COLOR_BTNSHADOW

Shadow color for 3D display elements (for
edges facing away from the light source).

COLOR_ACTIVEBORDER Active window border.

COLOR_ACTIVECAPTION Active window caption.

COLOR_APPWORKSPACE Background color of multiple document inter-
face (MDI) applications.

COLOR_BACKGROUND,
COLOR_DESKTOP

Desktop.

COLOR_BTNTEXT Text on push buttons.

COLOR_CAPTIONTEXT Text in caption, size box, and scroll bar arrow
box.

COLOR_GRAYTEXT Grayed (disabled) text. This color is set to 0 if
the current display driver does not support a
solid gray color.

COLOR_HIGHLIGHT Items selected in a control.

 203

Specifying XtDefaultForeground or XtDefaultBackground causes the wid-
get to use the appropriate Windows system colors.

Setting Fonts on UNIX and OpenVMS

The Font keyword is used to set the font used to create text in a widget. The Font
keyword has the form:

Font = ’fontname’

where fontname is the name of a font available on your system. On UNIX, for
example, Font may be specified as follows:

Font = ’-b&h-lucida-bold-r-normal-sans-14-*’

TIP Use the command xlsfonts to obtain a list of fonts available on your X
server.

If you inadvertently specify a font that cannot be found by the X server, a different
font will be substituted.

COLOR_HIGHLIGHTTEXT Text of selected items in a control.

COLOR_INACTIVEBORDER Inactive window border.

COLOR_INACTIVECAPTION Inactive window caption.

COLOR_INFOBK Color of text in an inactive caption.

COLOR_INFOTEXT Text color for tool tip controls.

COLOR_MENU Menu background.

COLOR_MENUTEXT Text in menus.

COLOR_SCROLLBAR Scroll bar gray area.

COLOR_WINDOW Window background.

COLOR_WINDOWFRAME Window frame.

COLOR_WINDOWTEXT Text in windows.

Windows System Colors Corresponding Widget Color

204 Application Developer’s Guide

Setting Fonts on Windows

On Windows, use the MSFont keyword to specify fonts for use in WAVE Widgets.
The MSFont keyword is specified as a string of the following form:

’face_name, point size, attribute’

where face_name specifies the type face, and attribute specifies font attributes
such as bold, italic, underline, etc.

For example: MSFont = ’Arial, 8, bold’

You can also specify Windows system fonts as shown in the following table.

If the font you specify isn’t supported on your system, Windows substitutes another
font, which is usually the system font.

Using a Resource File to Set Colors and Fonts

Characteristics such as foreground color, background color, and font are known as
resources, and these characteristics can be initialized using a resource file. WAVE
Widgets provides the ability to specify these resources with the keywords
Foreground, Background, Basecolor, and Font, as discussed in the previous two
sections.

Windows System Fonts Corresponding Widget Fonts

ANSI_FIXED Windows fixed-pitch (monospace) system font.

ANSI_VAR Windows variable-pitch (proportional space) system
font.

DEFAULT_GUI Windows 95/NT 4.0 only: Default font for user
interface objects such as menus and dialog boxes.

DEVICE_DEFAULT Windows NT only: Device-dependent font.

OEM_FIXED Original equipment manufacturer (OEM) dependent
fixed-pitch (monospace) font.

SYSTEM_VAR By default, Windows uses the system font to draw
menus, dialog box controls, and text. In Windows
versions 3.0 and later, the system font is a
proportionally spaced font; earlier versions of
Windows used a monospace system font.

SYSTEM_FIXED Fixed-pitch (monospace) system font used in
Windows versions earlier than 3.0. This font is
provided for backwards compatibility with earlier
versions of Windows.

 205

When the Resource File is Checked

If widget resources are not specified with the keywords Foreground, Background,
Basecolor, and Font, PV-WAVE will query the X resource database and use the val-
ues defined there.

NOTE Using a resource file for WAVE Widgets is optional.

Adding resources to the resource database is a two step process.

❑ The first step is to create a resource file. The following is a sample resource file
for setting application-wide resources for foreground color, background color,
and font of a WAVE Widgets application called my_gui:
my_gui*foreground:Black

my_gui*background: Cyan

my_gui*font: fixed

The application name my_gui is defined in the WwInit command. For
example:
top = WwInit(’my_gui’, ’Examples’, layout, /Vertical)

You can also put the resource names in your .Xdefaults file, if you only
need to customize your own version of the software. Either way, the new values
of the resources will not take effect until the next time PV-WAVE is started.

❑ The second step is to install the resource file into the X resource database. The
simplest way to install resources is to merge your resource file with X resource
database using the following command:
xrdb -merge resource_filename

where resource_filename is the name of your resource file.

NOTE It is also possible to set the resources for particular widgets or groups of
widgets in your application. To do this, you will have to know the names of all or
some of the widgets in the widget hierarchy. (A widget’s name is determined by its
placement in the hierarchy.) The more specific the widget hierarchy you provide,
the fewer the number of widgets that are affected by the change.

For more information about how widgets are related to one another, see The Widget
Hierarchy on page 166.

To find out widget names of particular WAVE Widgets, refer to the appropriate
WAVE Widgets .pro files located in the standard library directory:

(UNIX) $VNI_DIR/wave/lib/std/motif

206 Application Developer’s Guide

(OpenVMS) VNI_DIR:[WAVE.LIB.STD.MOTIF]

(Windows) %VNI_DIR%\wave\lib\std\windows

Where VNI_DIR is the main Visual Numerics directory.

For more information about how to write and install X Window System resource
files, refer to Volume 4 of the X Toolkit Intrinsics Programming Manual, O’Reilly
& Associates, Inc., Sebastopol, CA, 1990.

Setting and Getting Widget Values
Most of the widgets have values associated with them that are set when the widget
is created.

After a widget is created, these values can be changed or obtained using the
WwGetValue or WwSetValue routines.

The values that are set or obtained with WwSetValue and WwGetValue differ from
one WAVE Widgets routine to another. Refer to the specific routine descriptions in
Chapter 7 for details.

For example, when WwSetValue is passed a widget ID from a widget created with
WwList, the value that is set is an array of strings to replace the current items in the
list. If WwGetValue is passed the widget ID from a widget created with WwList,
it returns a string array containing the selected items in the scrolling list.

The following callback uses WwGetValue to obtain the list of selected items from
a scrolling list. Then, WwSetValue is used to replace the selected items with new
strings. To run this example, enter the callback routine in a file and compile it with
the .RUN command. Then enter the widget commands at the WAVE> prompt.

Callback Procedure

PRO ListCB, wid, data

print,’Item Selected’

value = WwGetValue(wid)

; Obtain the values of the selected items in the scrolling list.
print, value

print,’Setting..’

status=WwSetValue(wid, [’First’,’Second’, ’Third’])

; Set the value of the scrolling list widget whose ID is wid to
; the strings First, Second, and Third.

END

 207

Widget Commands

top=WwInit(’ww_ex18’, ’Examples’, layout)

items = [’Presidents Day’, ’St.Patricks Day’,$
’Easter’, ’Memorial Day’, ’4th of July’,$
’Labor Day’, ’Halloween’, ’Thanksgiving’,$
’Hanukkah’, ’Christmas’, ’New Years Eve’]

; Define the list of items.

list=WwList(layout, items, ’ListCB’,$
’DefaultCB’, Visible=7,/Multi, Left=rbox, Top=controls)

; Create a scrolling list widget that displays the list of holidays.

status=WwSetValue(top, /Display)

WwLoop

Passing and Retrieving User Data
All WAVE Widgets can carry the user-specified value of a variable. This allows the
developer to store the copy of the variable with the widget in one routine and
retrieve it in another routine. Any value can be stored and retrieved; it is up to the
discretion of the programmer.

This feature is useful for passing values between routines without using Common
Block variables.

To store the value 111 with a widget, use the following command:

status = WwSetValue(widgetID, Userdata=111)

To retrieve the value of Userdata from the widget, use the command:

value = WwGetValue(widgetID, /Userdata)

Example

The following example shows a practical use for passing a value with the Userdata
keyword to close an application when the user clicks on a specified button. The
value of the top-level widget, top, is passed from the widget creation procedure
myap to the callback procedure ButtonCB via the Userdata keyword. This value
is then used in the WwSetValue function to close the application by destroying the
top-level widget when the user clicks on Quit. You can run this example by typing
the callback procedures into a file and compiling them with the .RUN command.
Then enter the application procedure in a file and run it.

208 Application Developer’s Guide

Callback Procedure

PRO ButtonCB, wid, data

CASE data OF

1: BEGIN

top=WwGetValue(wid, /Userdata)

; Get the value of the top-level widget.
PRINT, top

status=WwSetValue(top, /Close)

END

2: PRINT, ’Dialog Selected’

3: PRINT,’Message Selected’

ENDCASE

END

PRO RadioCB, wid, which

CASE which OF

1: PRINT,’First Toggle Selected’

2: PRINT,’Second Toggle Selected’

3: PRINT,’Third Toggle Selected’

ENDCASE

value = WwGetValue(wid)

print, value

END

Application Procedure

PRO myap

top=WwInit(’ww_ex19’, ’Examples’, layout,$
/Vertical, Spacing=30, Border=10)

blabels = [’Quit’,’Dialog’,’Message’]

bbox=WwButtonBox(layout, blabels, $
’ButtonCB’, /Horizontal, Spacing=20)

status=WwSetValue(bbox, Userdata=top)

; Store the value of the top-level widget with the Userdata keyword.

rlabels=[’System’,’Owner’,’Group’]

rbox=WwRadioBox(layout,rlabels, ’RadioCB’, $
/Vertical, Border=2, Spacing=20, $
Top=controls)

status=WwSetValue(top, /Display)

WwLoop

END

 209

Managing Widgets
Besides colors, fonts, and userdata values, two additional widget attributes can be
managed by the developer: widget visibility and sensitivity.

Showing/Hiding Widgets

The Show and Hide keywords to the WwSetValue function control whether a wid-
get is visible or not. By default, all widgets are shown when they are created.

To hide a widget, use the Hide keyword:

status = WwSetValue(widget, /Hide)

To show a hidden widget, use the Show keyword:

status = WwSetValue(widget, /Show)

In these functions, the widget parameter is the widget ID of the widget you want
to show or hide.

You can also test to determine if a widget is shown or hidden, using the Shown key-
word in the WwGetValue function.

shown = WwGetValue(widget, /Shown)

If the widget is shown, the function returns 1; if hidden, 0 is returned.

Widget Sensitivity

If a widget is sensitive, some action will occur when the user selects the widget.
For example, if the user clicks on a button that is sensitive, an action occurs. By
default, all widgets are sensitive when they are created.

You can set a widget to be nonsensitive using the Nonsensitive keyword in the
WwSetValue function. When a widget is set to nonsensitive, its foreground color
is grayed-out, and the widget cannot accept input from the user.

status = WwSetValue(widget, /Nonsensitive)

To change a widget from nonsensitive to sensitive, use the /Sensitive keyword:

status = WwSetValue(widget, /Sensitive)

To determine if a widget is sensitive, use the Sensitive keyword in the WwGetValue
function.

shown = WwGetValue(widget, /Sensitive)

If the widget is sensitive, the function returns 1; if nonsensitive, 0 is returned.

210 Application Developer’s Guide

Displaying Widgets and Processing Events
After all of the widgets in a widget hierarchy have been created, they are displayed
when the top-level or “root” window is displayed. The following command accom-
plishes this:

status = WwSetValue(top, /Display)

For more information on the widget hierarchy, see The Widget Hierarchy on page
166.

Next, control must be transferred to the main event loop, which handles events
(mouse clicks, for example) and executes callbacks. To do this, simply call the
WwLoop function:

WwLoop

The application remains in the main loop until the top-level window is closed with
the following call:

status = WwSetValue(top, /Close)

or until the top-level window is closed from the window manager menu. Under
Motif, the window manager menu usually contains a Close button.

While the loop is running, any callback procedures that have been defined are exe-
cuted whenever the appropriate events occur.

The use of WwSetValue to display and close widgets is demonstrated in examples
throughout this chapter. See for example File Selection Example on page 197.

Programming Tips and Cautions

PV-WAVE Routines to Avoid

Avoid using the following routines in applications developed with WAVE Widgets
or the Widget Toolbox. These routines wait for keyboard input and thus block the
GUI. Where possible, alternative methods are suggested.

Standard Library Routines

• GET_KBRD — Try using a text field widget instead.

• HAK — Try using a non-blocking message widget instead.

• MOVIE — Try using WgMovieTool instead.

 211

User Library Routines

• ANMENU — Try using WAVE Widgets menus instead.

• UNCMPRS_IMAGES

• XANIMATE — Try using WgAnimateTool instead.

PV-WAVE Routines to Use with Caution

Use the following routines with caution in applications developed with WAVE
Widgets or the Widget Toolbox. All of these routines block the user from interact-
ing with the GUI.

Standard Library Routines

• C_EDIT — Try using WgCeditTool instead.

• COLOR_EDIT — Try using WgCeditTool instead.

• CURSOR — Try using the Widget Toolbox event handler instead.

• DEFROI

• PALETTE — Try using WgCeditTool instead.

• PROFILES

• RDPIX

• WAIT — Try using the WtTimer function instead.

• WMENU — Try using a menu bar widget instead.

• ZOOM

Application Example
The following example program uses WAVE Widgets to create an image process-
ing application that includes a drawing area for displaying the image and a menu
containing image processing functions. Figure 5-30 on page 216 shows the main
window of the application with an image displayed in the drawing area.

You can find this program file in the following location:

Under UNIX

$WAVE_DIR/demo/wavewidgets/simple_image.pro

212 Application Developer’s Guide

Under OpenVMS

WAVE_DIR:[DEMO.WAVEWIDGETS]SIMPLE_IMAGE.PRO
;

; Example of WAVE Widgets. It displays an image, and allows you to
; change color table, and do some basic Image Processing.
;

PRO FileOK, wid, shell ; File Selection is done, let's load it
common widgets, top, slider
common images, orig, image, draw, size
common rotate, sliderval

file = WwGetValue(wid) ; Get the file name
file = FINDFILE(file) ; Find the file

if N_ELEMENTS(file) lt 1 then begin ; File not found display warning
message=WwMessage(wid,'File Not Found!',/WARNING,TITLE='File Error')

endif else begin ; Got a file lets load it
OPENR, /GET_LUN, unit, file(0)
status=FSTAT(unit) ; Get the size and hope it is square image
size=LONG(SQRT(status.SIZE)) ; Calculate hight,width
image=MAKE_ARRAY(size,size,/BYTE); make new image array
READU,unit,image ; Read image, close the unit
FREE_LUN, unit
orig=image ; Store original for reload
sliderval = 0 ; Reste slider value
status=WwSetValue(slider,0) ; Reset rotate slider
status=WwSetValue(draw,[size,size]) ; Set new draw area value
DrawCB, draw, 1 ; Redraw the image

endelse

status = WwSetValue(shell,/CLOSE) ; Close the file selection window
END

PRO FileCancel, wid, shell ; File selection canceled
status = WwSetValue(shell,/CLOSE) ; Close the file selection window

END

PRO FileCB, wid, which ; File handling
common widgets, top, slider
common images, orig, image, draw, size

case which of
1: begin ; Reload the image

image=orig
status=WwSetValue(slider,0) ; Reset rotate slider
DrawCB,draw,1

 213

end

2: begin ; Display file selection window
if !version.platform eq 'vms' then $

dir = getenv('WAVE_DIR')+'[data]' $
else $

dir = getenv('WAVE_DIR')+'/data/'
file = WwFileSelection(wid,'FileOK','FileCancel',$

POSITION=[200,200],$
TITLE='Load Image',DIR=dir,PATTERN='*.img')

end

3: status=WwSetValue(top,/Close) ; Close the application,Bye,bye.
endcase

END

PRO ImageCB, wid, which; Modifying image
common images, orig, image, draw, size

case which of
1: image=ERODE(image,[[0,1,0],[1,1,1],[0,1,0]],/Gray) ; Erode
2: image=DILATE(image,[[0,1,0],[1,1,1],[0,1,0]],/Gray) ; Dilate
3: image=SHIFT(ALOG(ABS(FFT(image,-1))),size/2) ; FFT
4: image=HIST_EQUAL(image) ; Histogram
5: image=ROBERTS(image) ; Roberts
6: image=SMOOTH(image,5) ; Smooth
7: image=SOBEL(image) ; Sobel

endcase
DrawCB, draw, 1 ; Redraw the image

END

PRO ColorCB, wid, which ; Loading new colortable
LOADCT,which-1,/SILENT

END

PRO DrawCB, wid, windex; Drawing the image
common images, orig, image, draw, size

TVSCL, image
END

PRO SliderCB, wid, which ; Lets rotate the image
common images, orig, image, draw, size
common rotate, sliderval

value=WwGetValue(wid)
if sliderval ne value then begin

image=ROT(image,value)

214 Application Developer’s Guide

DrawCB, draw, 1 ; Redraw the image
sliderval = value

endif
END

PRO simple_image

common widgets, top, slider
common images, orig, image, draw, size
common rotate, sliderval
image = Bytarr(512,512)
size=512
sliderval=0

; Loading first image
if !version.platform eq 'vms' then $

filename=getenv('WAVE_DIR')+'[data]head.img' $
else $

filename='$WAVE_DIR/data/head.img'

test=FINDFILE(filename)
if N_ELEMENTS(test) lt 1 then begin

if test(0) eq '' then begin
message,'Data subdirectory not available'
EXIT

endif
endif

Openr,1,filename
readu,1,image
close, 1
orig=image

top=WwInit('simple_image','Examples',layout,BACKGR='SkyBlue',$
POSITION=[100,100], /VERTICAL, SPACING=5)

; Main menu bar for File, Image Processing, Color Tables
menus={,$

menubutton:'File',$
menu:{,callback:'FileCB',title:'File',$

button:'Reload Image',$
button:'Load New Image',$
button:'Exit'},$

menubutton:'Image Processing',$
menu:{,callback:'ImageCB',title:'Image',$

button:'Erode',$
button:'Dilate',$
button:'FFT',$
button:'Histogram',$

 215

button:'Roberts',$
button:'Smooth',$
button:'Sobel'},$

menubutton:'Color Tables',$
menu:{,callback:'ColorCB',title:'Color',$

button:'Black/White Linear',$
button:'Blue/White',$
button:'Green/Red/Blue/White',$
button:'Red Temperature',$
button:'Blue/Green/Red/Yellow',$
button:'Standard Gamma-II',$
button:'Prism',$
button:'Red/Purple',$
button:'Green/White Linear',$
button:'Green/White Exponential',$
button:'Green/Pink',$
button:'Blue/Red',$
button:'16 Level',$
button:'16 Level II',$
button:'Steps',$
button:'PV WAVE'}$

}
bar=WwMenuBar(layout, menus); Let's create menu bar

draw=WwDrawing(layout,1,'DrawCB',[400,400],[512,512]) ;Creating Draw Area

; Creating Slider for Rotation
slider = WwControlsBox(layout,'Rotate',[0,360],'SliderCB',/VERTICAL,$
/TEXT, FOREGROUND='red',BACKGROUND='yellow',WIDTH=300)

status=WwSetValue(top,/DISPLAY); Displaying widget hieararchy

WwLoop ; Waiting for callbacks
END

216 Application Developer’s Guide

Figure 5-30 The main window of the image processing application
simple_image.pro (Motif style).

menu bar

drawing area

controls box
(slider)

217

CHAPTER

6

Using the Widget Toolbox

Introduction to the Widget Toolbox
The Widget Toolbox is an application programmer’s interface (API) used to create
graphical user interface (GUI) applications for PV-WAVE. The Widget Toolbox
provides a high-level method of creating and manipulating the GUI, while using
the flexibility and power of PV-WAVE to process and display data. The Widget
Toolbox consists of system routines that give you access to all the widget types sup-
ported by the OSF Motif toolkit.

Windows USERS Visual Numerics has ported a subset of the Widget Toolbox
(Wt) functionality that is available for Motif to Microsoft Windows. Because the
Widget Toolbox under Windows is not a complete implementation, we recommend
that Windows developers use the WAVE Widgets (Ww) layer or the VDA Tools
when developing GUI applications.

This chapter describes the Widget Toolbox and the basic steps in incorporating
widgets into PV-WAVE applications. The topics include:

• An overview of the Widget Toolbox

• How to use the Widget Toolbox

• A brief description of include files that are used with the Widget Toolbox

• An example application using the Widget Toolbox

218 Application Developer’s Guide

The Widget Toolbox routines are primarily for PV-WAVE developers who are
familiar with Xt Intrinsics/Motif-based programming or Windows programming.
If you are not familiar with Motif or Windows programming, then use the WAVE
Widgets functions described in Chapter 5, Using WAVE Widgets.

NOTE Visual Numerics does not support the use of Widget Toolbox applications
with 24-bit hardware.

Basic Steps in Creating the GUI
The basic steps involved in creating an application GUI with the Widget Toolbox
are:

❑ Initialize the Widget Toolbox with a call to the WtInit function.

❑ Create widgets with the WtCreate function, and set resources that control the
appearance and other characteristics of the widgets.

❑ Manage, display, and destroy widgets with the WtSet function.

❑ Add callbacks, event handlers, and timers.

❑ Run the application.

❑ Close the Widget Toolbox.

Combining WAVE Widgets and Widget Toolbox Functions

It is possible to combine WAVE Widgets and Widget Toolbox functions in the same
application.

Widget IDs returned by WAVE Widget routines can be used in Widget Toolbox
routines, and Widget Toolbox widget IDs can be passed to WAVE Widget routines.

The basic steps for creating an application that combines the two kinds of widget
functions do not change. You must initialize either WAVE Widgets or the Widget
Toolbox (WwInit or WtInit function), create the widgets, display or “realize” the
widgets, and execute the main loop with either the WwLoop or WtLoop function.
For information on WAVE Widgets, see Chapter 5, Using WAVE Widgets.

 219

Initializing the Widget Toolbox
The PV-WAVE system function WtInit initializes the Widget Toolbox. You must
execute WwInit before any other Widget Toolbox functions. WtInit does the
following:

• Establishes a connection to the X server.

• Initializes Xt Intrinsics

• Initializes the Motif Toolkit/Windows Advanced Controls Library

• Initializes the Widget Toolbox.

For example:

top = WtInit(name,class)

The name parameter specifies the name of the application, and the class parameter
indicates a more general category of application class. For example, in the example
program at the end of this chapter, the call to WtInit is:

war(0)= WtInit(’example’, ’Examples’)

where example is the name of the application, and Examples specifies a gen-
eral class to which example belongs. One purpose of the general class
(Examples) is that resources in a single resource file can be shared among ele-
ments of that class.

See also the example Widget Toolbox application at the end of this chapter.

Creating Widgets
Rather than dealing directly with X library windows, applications using Xt Intrin-
sics-based toolkits (Motif) use widgets.

A widget is a complex data structure containing interface-related data and set of
procedures that perform actions on that data.

Each widget is represented externally by a widget ID. Widgets form hierarchies
known as widget trees. The root of every widget hierarchy is a special type of wid-
get called a shell. The shell widget provides an interface between the child widget
and the window manager.

The WtCreate function provides the general mechanism for creating all PV-WAVE
widgets. For example:

result = WtCreate('name', class, parent, args)

220 Application Developer’s Guide

Windows USERS WtCreate is not supported for Windows.

The name parameter is a string that identifies the widget. The class parameter is a
widget class ID that specifies the type of widget to be created. Widget class IDs are
long values defined in the Standard Library files wtxmclass.pro. The widget
class IDs for Motif are also listed in Appendix A, Motif Widget Classes.

The parent parameter must be a widget ID of a widget that already exists. This can
be a shell or any other type of widget that can have child widgets. The args param-
eter specifies values for resources used by the widget. See the next section for
information on setting resources.

See also the example Widget Toolbox application at the end of this chapter.

Setting and Getting Resources
You can change the way a widget appears or behaves by specifying values for
resources used by the widget.

Resources are specified using an unnamed structure with each tag name represent-
ing the resource name and each tag definition representing the resource value.

An unnamed structure has the following general definition:

x = {, tag_name1: tag_def1, tag_namen: tag_defn}

For detailed information on unnamed structures, see Creating Unnamed Structures
on page 92.

A resource name is a string indicating the type of resource. The resource name of
a Widget Toolbox widget is derived directly from Motif resource names. Motif
resource names are listed in the OSF/Motif Programmer’s Guide.

Remove the XmN prefix from the Motif resource names. For example:

Motif Resource Widget Toolbox Resource

XmNx x

XmNy y

XmNlabel label

XmNforeground foreground

 221

The data type of a resource’s value depends on the type of the resource.

Example

args={,x: 30, y: 50, label:’Done’, foreground: ’red’}

; Create an unnamed structure containing resource names and values.

wid=wtcreate(’button’, xmPushButtonWidgetClass, parent, args)

; Create a pushbutton widget and use the args structure to
; specify its resources.

See also the example at the end of this chapter.

Managing, Displaying, and Destroying Widgets
Except for top-level shell widgets, all widgets must be “managed” by a parent wid-
get. A widget’s parent manages the widget’s size and location, determines whether
or not the widget is mapped (associated with an X window), and also controls the
input focus of the widget.

By default all widgets are managed when created. To unmanage a widget after cre-
ation, use the WtSet function with the Unmanage keyword. For example:

status=WtSet(wid, /Unmanage)

To display a widget hierarchy, “realize” the shell widget of a hierarchy using the
WtSet function with the Realize keyword. For example:

status=WtSet(shellid, /Realize)

To undisplay an individual widget, “unmanage” it using WtSet with the Unmanage
keyword. For example:

status=WtSet(wid, /Unmanage)

To undisplay a whole widget hierarchy, unmanage the shell widget using WtSet
with the Unmanage keyword. For example:

status=WtSet(shellid, /Unmanage)

To destroy a widget use WtSet with the Destroy keyword. For example:

status=WtSet(wid, /Destroy)

To destroy and close a whole widget hierarchy, use the WtClose function. For
example:

status=WtClose(shellid)

See also the example Widget Toolbox application at the end of this chapter.

222 Application Developer’s Guide

Adding Callbacks (Motif Only)
Most widgets provide “hooks” that call particular procedures when a predefined
condition occurs. These hooks are known as callback lists and the procedures are
called callbacks. To add a callback to a widget’s callback list, use the WtAddCall-
back function:

status = WtAddCallback(wid, reason, procedure, [client_data])

Windows USERS WtAddCallback is not supported for Windows.

The wid parameter is the ID of the widget to add the callback to. The reason param-
eter is a string that specifies the callback list to which the callback routine (function
or procedure) is to be added. The reason name is derived from the Motif reason
name. Remove the XmN prefix from the Motif reason names. For example:

The application can optionally use the client_data parameter to specify some appli-
cation-defined data to be passed to the callback procedure when the callback is
invoked. If client_data is a local variable (defined only in the current procedure), a
copy of that variable is created and passed (passed by value). If the client_data is
a global variable (defined in a Common Block), it is passed by reference.

The form of every Widget Toolbox callback procedure is:

PRO CallbackProc, widget, client_data, $
nparams, [p1, p2, ... pn]

where:

widget — The widget ID.

client_data — The client_data passed to WtAddCallback.

nparams — The number of callback-specific parameters after nparams. Two addi-
tional parameters are required: event and reason. For information on these
additional parameters, see Appendix B, Motif Callback Parameters.

pi — The optional callback-specific parameters. For additional information on
these parameters, see Appendix B, Motif Callback Parameters.

Motif Reason Widget Toolbox Reason

XmNactivateCallback activateCallback

 223

Example

This example adds a callback called quitit to the callback list for the widget
warr(2). The callback reason is activateCallback.

status=WtAddCallback(warr(2), ’activateCallback’, ’quitit’)

See also the example Widget Toolbox application at the end of this chapter.

Adding Event Handlers
An event handler is a procedure that is executed when a specific type of event
occurs within a widget. Some, all, or no X events can be handled using one or more
event handlers. To register an event handler for events that occur in a widget use
the system function WtAddHandler:

status = WtAddHandler(wid, eventmask, handler, [client_data])

This function registers a callback procedure specified by the handler parameter (a
string) as an event handler for the events specified by the eventmask parameter. The
eventmask parameter must be one of the standard event masks defined in the file
wtxlib.pro in the Standard Library. The wid parameter is the ID of the widget
to add the handler to.

You can register event handlers for multiple event masks using the OR operator.
For example, ButtonUp and ButtonDown are combined with ButtonUp OR
ButtonDown, causing the event to be triggered when the mouse button is pressed
and when it is released.

The application can optionally use the client_data parameter to specify some appli-
cation-defined data to be passed to the event handler procedure when the callback
is invoked. If client_data is a local variable (defined only in the current procedure),
a copy of that variable is created and passed (by value). If client_data is a global
variable (defined in a Common Block), it is passed by reference.

The form of Widget Toolbox event handlers is:

PRO EventHandlerProc, widget, client_data, $
nparams, eventmask, event

where:

widget — The widget ID.

client_data — The client_data passed to WtAddHandler.

224 Application Developer’s Guide

nparams — The number of event handler-specific parameters after nparams. (This
number is always 2, for the eventmask and event parameters.)

eventmask — One of the standard event masks defined in the file wtxlib.pro
in the Standard Library. For a description of event masks, see Appendix E, “Event
Reference”, of the Xlib Reference Manual, Volume 2, (O’Reilly & Associates, Inc.,
1989).

event — Structure containing all the fields as defined for the Xlib XEvent structure.
If you are developing under Motif, see Appendix E, “Event Reference”, of the Xlib
Reference Manual, Volume 2, (O’Reilly & Associates, Inc., 1989) for a description
of event structures. If you are developing under Windows, see WtAddHandler
Function on page 365 for a description of the event structure.

Example
.

.

pane=WtCreate(’menu’, PopupMenuWidget, parent)

status = WtAddHandler(pane, ButtonPressMask, ’PostMenu’, parent)

.

.

PRO PostMenu, wid, parent, nparams, mask, event

@wtxlib

status=WtPointer("GetLocation", wid, state)

if (Button3Mask AND state(6)) ne 0 then $
status=WtSet(pane,POPUP=event)

END

X Event Handler Procedure Example

PRO handler, widget, data, nparams, mask, event

...

END

Adding Timers
A timer (the Xt Intrinsics term is TimeOut) is a procedure that is invoked when a
specified time interval has elapsed. This function can be used to add or remove a

 225

timer. To register a timer routine for a specified interval, use the WtTimer function
in the application with the ADD parameter.

timerid = WtTimer("ADD", interval, timer, [client_data])

The interval parameter specifies the time interval, in milliseconds, until the PV-
WAVE procedure timer callback timer is invoked. The WtTimer routine, unlike the
Xt TimeOut function, restarts itself when the timer callback procedure is called. To
stop the timer, use the following command in the timer callback:

status=WtTimer("REMOVE", timerid)

The application can optionally use the client_data procedure to specify some appli-
cation-defined data to be passed to the timer callback procedure when the callback
is invoked. If client_data is a local variable (defined only in the current procedure),
a copy of that variable is created and passed (passed by value). If client_data is a
global variable (defined in a Common Block), it is passed by reference.

The form of Widget Toolbox timer procedures is:

PRO TimerProc, widget, client_data, nparams, timerid, time

where:

widget — The top application shell widget ID.

client_data — The client_data passed to WtTimer.

nparams — The number of timer-specific parameters after nparams. (This number
is always 2, for timerid and time.)

timerid — The unique timer ID.

time — The time interval in milliseconds.

NOTE This timer routine is not related to the TIMER procedure in the Users’
Library.

Example
common timer, tid

.

.

id=WtTimer("ADD", 100, ’TimerCallback’, my_data)

PRO TimerCallback, wid, client_data, nparams, timer_id, interval

COMMON timer, tid

226 Application Developer’s Guide

tid = timer_id

.

.

END

Adding Work Procedures
Most applications spend most of their time waiting for events to occur. You can reg-
ister a work procedure that will be called when the toolkit is idle (waiting for an
event). The work procedure is the only means offered by the Xt Toolkit for per-
forming background processing. A work procedure is useful if you need to execute
a time-consuming operation from a callback procedure.

When a work procedure is added, it is executed in its entirety unless a REMOVE call
to WtWorkProc is issued before the procedure has been called.

If the work procedure does a large amount of processing it could block the widget
interface until it has finished running.

A typical implementation using WtWorkProc to perform a large amount of back-
ground processing is to break down the processing into a number of discrete steps
and execute the steps one at a time in a work procedure which issues another ADD
call to WtWorkProc to start the next step. Repeat this process until all the steps have
been completed.

To register a work procedure, use the system function WtWorkProc:

status = WtWorkProc(function, parameters)

The function parameter is an Add or Remove operation. Add registers a named work
procedure. The parameters used depend on whether an Add or Remove operation
is specified.

Adding Input Handler Procedures (Motif Only)
While most GUI applications are driven only by events, some applications need to
incorporate other sources of input into the X Toolkit event handling mechanism.
WtInput supports input or output gathering from files. The application registers an
input source handler procedure and a file with the X Toolkit. When input is pending
on the file, the registered handler is invoked. Note that a “file” in this context should
be loosely interpreted to mean any sink (destination of output) or pipe (source of
data).

 227

To register an input handler procedure, use the system function WtInput:

status = WtInput(function [, parameters])

The function parameter is an Add or Remove operation. Add registers an input han-
dler procedure. The parameters used depend on whether an Add or Remove
operation is specified.

The form of a Widget Toolbox input handler procedure is:

PRO InputHandlerProc, widget, client_data, $
nparams, inputid, lun, source

where:

widget — The top application shell widget ID.

client_data — The client data passed to WtInput.

nparams — The number of input handler-specific parameters after nparams. This
number is always three, for the inputid, lun, and source parameters.

inputid — A unique input handler ID.

lun — The logical unit number of the source (could be a file) generating the event.

source — The file descriptor of the source (could be a file) generating the event.

For more information on WtInput, see WtInput Function (Motif Only) on page 381.

Changing the Cursor
The WtCursor function lets you change or set the cursor. For instance, when a long
file is read into memory, you can display a wait cursor. You can select from a large
number of cursors listed in Appendix C, Widget Toolbox Cursors.

A call to WtCursor has the following form:

status = WtCursor(function, widget [, index])

The function parameter specifies the type of cursor: default, system, wait,
or set. If set is specified, then you must specify a cursor index from the list in
Appendix C, Widget Toolbox Cursors.

228 Application Developer’s Guide

Creating Tables
The WtTable function lets you modify tables of data created with the XbaeMatrix
widget. The XbaeMatrix widget is an editable 2D array of string data (cells) similar
to a spreadsheet.

The Motif version of the XbaeMatrix widget was originally developed by Andrew
Wason of Bellcore.

Complete documentation for the XbaeMatrix widget is available in the PostScript
file matrix_motif.ps, which you can print on any PostScript printer. This file
is in:

(UNIX) $VNI_DIR/wave/docs/widgets

(OpenVMS) VNI_DIR:[WAVE.DOCS.WIDGETS]

(Windows) %VNI_DIR\wave\docs\widgets

Where VNI_DIR is the main Visual Numerics directory.

Refer to this document for detailed information on the MbaeMatrix widget’s
resources and callbacks.

Running an Application
When all the widgets to be displayed are created and managed, and callbacks, han-
dlers, and timers are defined, you must then realize (display) the root widget in the
widget hierarchy and initiate the event loop:

top = WtInit(’appl’,’Appl’)

.

.

; Create the widgets.
.

.

status = WtSet(top, /Realize)

; Display the widget hierarchy.
WtLoop

; Initiate the event loop.

This causes the routine to loop indefinitely, processing the events and dispatching
callbacks, handlers, and timers. The WtLoop procedure can be stopped by destroy-
ing and closing the shell widget by calling WtClose:

status=WtClose(top)

 229

See also the example Widget Toolbox application at the end of this chapter.

Related Include Files
The following files are located in the PV-WAVE Standard Library. They are used
in Widget Toolbox applications as include files. To include a file in a program, use
the @ command. For example:

@wtxmclasses

• wtxmclasses.pro — Contains definitions of Motif widget classes.
Include this routine in every procedure that creates or handles Motif widgets.

• wtxmconsts.pro — Contains definitions of Motif-related constants (for
example, Xm...). Include this routine in each procedure using Motif-related
constants.

• wtxlib.pro— Contains X Event mask and type definitions, and other Xlib
constants for X Event handling. Include this file whenever you need to use
these constants.

• wtcursor.pro — Contains the indexes for standard and custom cursors.

Example Widget Toolbox Application
The following program demonstrates how to use Widget Toolbox functions to cre-
ate a simple GUI. This program displays a form containing a single button. When
you click on the button, the button’s label changes. The following figure shows the
example program’s output:

230 Application Developer’s Guide

Figure 6-1 Motif GUI created by the example program.

PRO QUITIT, wid, data, npars, reason, event, count

; The QUITIT procedure is a callback routine that is executed
; when the "Hello World" button is selected.

COMMON widgets, warr, pushed

; If the button is selected, replace the button label with "Good Bye!!!".
; Next time the button is selected, close the top-level window to quit
; the application.

IF pushed EQ 0 THEN BEGIN

args={,labelString:’Good Bye!!!!’}

; args is defined as an unnamed structure.

status=WtSet(wid,args)

pushed=1

ENDIF ELSE BEGIN

PRINT, ’Quitting...’

status=WtClose(warr(0))

ENDELSE

END

PRO EXAMPLE

; This procedure creates a pushbutton with the QUITIT routine as a the callback.

@wtxmclasses

@wtxmconsts

COMMON widgets, warr, pushed

warr = LONARR(4)

pushed=0

; Initialize the application.
warr(0)=WtInit(’example’,’Examples’)

; Create a "container" widget.
warr(1) = WtCreate(’form’,xmFormWidgetClass,$

warr(0))

args={,x:10,y:10}

; Create a label.
warr(2)=WtCreate(’Push Me, Please!’,$

xmLabelWidgetClass, warr(1),args)

args={,y:40,width:140,height:25,recomputeSize:FALSE}

; Create the "Hello World" push button.
warr(3)=WtCreate(’Hello,World!’,$

xmPushButtonWidgetClass, warr(1),args)

 231

; Add the button callback.
status=WtAddCallback(warr(3), ’activateCallback’, ’quitit’)

; Display the top-level shell.

status=WtSet(warr(0), /Realize)

; Process events. Call callbacks.
WtLoop

END

Programming Tips and Cautions
For information on routines to avoid or use with caution when you are developing
widgets applications, see Programming Tips and Cautions on page 210.

See also Appendix D, Developing Portable Applications.

232 Application Developer’s Guide

233

CHAPTER

7

WAVE Widgets Reference

WwAlert Function
Creates a modal (blocking) or modeless (non-blocking) popup alert box containing
a message and optional control buttons.

Usage

wid = WwAlert(parent, label [, answers])

Input Parameters

parent — The widget ID of the parent widget.

label — A string containing the message text.

answers — (optional) A string or array of strings (0 – 3) containing the text to
appear on the buttons. If this parameter is not specified, the following default text
is used: OK, Cancel, and Help.

Returned Value

wid — The index number of the button that was clicked. If the Nowait keyword is
specified, the alert box ID is returned.

234 Application Developer’s Guide

Keywords

After — Specifies the number of seconds that the alert box appears. After the spec-
ified number of seconds, the alert box is automatically destroyed, and WwAlert
returns the value –1.

Block — If nonzero, creates a modal (blocking) alert box.

Error — If nonzero, creates an error alert box.

Help — A string specifying the name of a topic in the online Help system (i.e.,
Hyperhelp on UNIX and OpenVMS platforms or Windows Help on Windows plat-
forms). For a list of valid Help topics, bring up the Search dialog box from the main
online Help window.

Helpfile — Specifies a string containing the name of an online Help file.

Info — If nonzero, creates an information alert box.

Name — Specifies a string containing the name for the Warning, Question, Work-
ing, or Information dialog widget. (Default: Alert.)

NoConfirm — If nonzero, no buttons are displayed in the alert box.

NonBlock — If nonzero, creates a non-blocking alert box. (This keyword has no
effect under Microsoft Windows.)

Nowait — If nonzero, WwAlert returns to the caller immediately after the alert box
appears, and WwAlert returns the alert box ID.

Question — If nonzero, creates a question alert box.

Raise — If nonzero, the alert box always appears in front of other windows.

Title — Specifies a string containing the alert box title.

Warning — If nonzero, creates a warning alert box.

Working — If nonzero, creates a working alert box.

Color/Font Keywords

Background — Specifies the background color name.

Font — Specifies the name of the font used for the text that appears in the alert box.

Foreground — Specifies the foreground color name.

Get/Set Value

None.

WwAlert Function 235

Callback Parameters

None.

Discussion

The alert box can be used to:

• Halt execution of the program until the alert condition is satisfied.

• Allow the calling routine to display an alert with a specified number of buttons
(0 – 3) and button labels.

The alert box supports the following features:

• Multiline labels. (Use the ASCII code \012 at the end of each line to indicate
a <Return>, or you can use an array of strings, where each array element is
taken to be a separate line.)

• Context sensitive help.

NOTE If the Nowait keyword is specified, control is returned to the calling routine
immediately after the alert becomes visible. After that point, it is up to the calling
routine to destroy the alert box with the WwAlertPopdown function.

Example

This example creates a button box containing seven buttons that test the features of
the WwAlert function. The callback ButtonCB is executed when one of the but-
tons in the button box is selected.

Enter the callback procedure and the main procedure into a file, and compile it with
the .RUN command. To run the example, entertestalert at theWAVE> prompt.
To dismiss the button box, select the appropriate function (such as Close) from the
window manager menu.

PRO ButtonCB, wid, idx
message = [’This is an example’, $
’of the Alert Box’,’Wave Widget’]

CASE idx OF

1:button=WwAlert(wid, message)

2:button=WwAlert(wid, message, After = 5)

3:button=WwAlert(wid, message,/Noconfirm, /Raise)

4:button=WwAlert(wid, message, "Done")

5:button=WwAlert(wid, message,["Done","Dismiss"])

236 Application Developer’s Guide

6:button=WwAlert(wid,message,["Done","Dismiss","Bye"])

7:button=WwAlert(wid, message, /Noconfirm, /Nowait)

ENDCASE

PRINT, ’Button selected: ’, button

CASE button OF

1: PRINT, ’Selected OK’

2: PRINT, ’Selected Cancel’

3: PRINT, ’Selected Help’

ELSE: PRINT, ’None selected’

ENDCASE

IF idx EQ 7 THEN BEGIN

WAIT, 5

PRINT,’Done waiting, popping it down...’

WwAlertPopdown, button

ENDIF

END

PRO testalert

top = WwInit(’testalert’, ’Test’, layout)

buttons = [’Alert’, ’Alert After’, $
’0 button’, ’1 button’, ’2 buttons’, $
’3 buttons’, ’Nowait’]

button = WwButtonBox(layout, buttons, "ButtonCB")

status = WwSetValue(top, /Display)

WwLoop

END

See Also

WwAlertPopdown, WwMessage

WwAlertPopdown Procedure 237

WwAlertPopdown Procedure
Destroys an alert box.

Usage

WwAlertPopdown, wid

Input Parameters

wid — The widget ID of the alert box to be destroyed.

Keywords

None.

Discussion

This function is used to destroy an alert box that was created when the WwAlert
Nowait keyword was specified.

Example

For an example of WwAlertPopdown, see the WwAlert function example.

See Also

WwAlert

238 Application Developer’s Guide

WwButtonBox Function
Creates a horizontally or vertically oriented box containing push buttons.

Usage

bbox = WwButtonBox(parent, [labels,] callback)

Input Parameters

parent — The parent widget’s ID.

labels — (optional) A string or an array of strings containing the text that is to
appear on the buttons. If the labels parameter is defined as a null string or an array
of null strings, the function looks for button labels in a resource specification (see
Discussion).

callback — A string containing the name of the callback routine.

Returned Value

bbox — The ID of the button box widget.

Input Keywords

Border — Specifies the width in pixels of the button box and button borders.

Center — An array specifying the position of the left and right edge of buttons as
a percentage of button box width. By default, buttons are spaced evenly in the box.

Form — When present and nonzero, buttons are placed in a form layout and all
specified attachment keywords are honored (i.e., /Left, /Right, /Top, /Bottom). By
default, buttons are placed in a row/column layout.

Horizontal — If present and nonzero, creates a horizontally aligned row of buttons.

Layout_name — Specifies the name of the container widget used to organize the
buttons. The Layout_name specified is the compound widget layout name used in
the resource specification. (Default: buttons.)

Measure — Specifies the number of columns of buttons (for a vertical box) or rows
(for a horizontal box).

Name — Specifies an array of strings containing the names of the button widgets
in a resource specification. The Name keyword can be used in place of the labels

WwButtonBox Function 239

parameter, although labels (if other than an array of null strings) will take prece-
dence if both are given. (Default: button_0, button_1, ...,
button_n.)

Position — If the button box widget is to be placed in a bulletin board layout, use
this keyword to specify the x, y coordinates of the button box widget within the bul-
letin board.

Vertical — When present and nonzero, creates a vertically aligned column of
buttons.

Spacing — Specifies the space in pixels between buttons.

Output Keywords

Buttons — Returns an array of push button widget IDs.

Color/Font Keywords

Background — Specifies the background color name. Background color is the
color of the button.

Basecolor — Specifies the base color of the container widget.

Font — Specifies the name of the font used for button text.

Foreground — Specifies the foreground color name. Foreground color is the color
of the button text.

Attachment Keywords

Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the button box widget is attached to the top of the specified widget. If no
widget ID is specified (for example, /Bottom), then the bottom of the button box
widget is attached to the bottom of the parent widget.

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the button box widget is attached to the right side of the specified widget. If no wid-
get ID is specified (for example,/Left), then the left side of the button box widget
is attached to the left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the button box widget is attached to the left side of the specified widget. If no
widget ID is specified (for example, /Right), then the right side of the button box
widget is attached to the right side of the parent widget.

240 Application Developer’s Guide

Top — If a widget ID is specified (for example, Top=wid), then the top of the but-
ton box widget is attached to the bottom of the specified widget. If no widget ID is
specified (for example, /Top), then the top of the button box widget is attached to
the top of the parent widget.

Get/Set Value

getvalue — Gets the label of the selected button.

setvalue — Sets the label of the selected button.

Callback Parameters

Any button box callback procedure must have the following two parameters:

wid — The button widget ID.

index — Index of the button pushed (1 – n).

Discussion

The “button box” is a special widget in which individual buttons are arranged. If
only one button is requested, that button’s widget ID is returned. By default, the
buttons are arranged in a row/column format. See the WwLayout function for
information on row/column format.

Part of the button box widget resource names can be specified using the Name key-
word, otherwise the defaults are the *.button_#.labelString resources.

TIP The labels parameter provides a method for “hard-coding” the button names
in the application. For greater flexibility, create your resource files using a text edi-
tor, and load the resources containing the button names using WtResource. The
Name keyword can then be used in the WwButtonBox calling sequence to specify
the names for the button widgets.

Example 1

This example creates a button box containing three buttons, Quit, Dialog, and Mes-
sage. The callback ButtonCB is executed when one of the buttons in the button
box is selected.

Enter the callback procedure into a file, and compile the procedure with the .RUN
command. Then, enter the widget commands at the WAVE> prompt. To dismiss the

WwButtonBox Function 241

button box, select the appropriate function (such as Close) from the window man-
ager menu.

Callback Procedure

PRO ButtonCB, wid, data

CASE data OF

1: PRINT,’Quit Selected’

2: PRINT,’Dialog Selected’

3: PRINT,’Message Selected’

ENDCASE

END

Widget Commands

labels = [’Quit’,’Dialog’,’Message’]

top=WwInit(’ww_ex20’, ’Examples’, layout)

bbox=WwButtonBox(layout, labels,’ButtonCB’, /Horizontal, $
Center=[10,30,40,60,70,100])

status=WwSetValue(top, /Display)

WwLoop

Example 2

A typical resource specification for the button names used in WwButtonBox is:

myapp.layout.buttonform.quit_button.labelString: Quit

See Also

For more information about how to write an application program based on WAVE
Widgets, refer to Chapter 5, Using WAVE Widgets.

For additional information on the color and font keywords, see Setting Colors and
Fonts on page 201.

For additional information on attachment keywords, see Form Layout: Attachments
on page 170.

For information on Get and Set values, see Setting and Getting Widget Values on
page 206.

242 Application Developer’s Guide

WwCallback Function (Motif Only)
Adds or removes a WAVE Widgets callback.

Usage

status = WwCallback(wid, callback, reason, client_data)

Input Parameters

wid — The ID of the widget for which to add or remove the callback.

callback — A string containing the name of the PV-WAVE callback routine.

reason — A string containing the callback reason. (See the Discussion section for
more information.)

client_data — A variable. The value of this variable is passed to the callback
routine.

Returned Value

status — A value indicating success or failure of the addition or removal of the
WAVE Widgets callback.

Keywords

Add — If nonzero, the specified callback is added.

Params — If nonzero, the callback is called with all parameters. (Default: called
with only the wid and data parameters; see the Callback Parameters section)

Remove — If nonzero, the specified callback is removed.

Callback Parameters

Any added callback procedure must have the following two parameters:

wid — The widget ID.

data — User-defined data.

1 Indicates success.

0 Indicates failure.

WwCommand Function 243

Discussion

Callback reasons are listed throughout the OSF/Motif Programmer’s Reference.

Windows USERS Visual Numerics has ported a subset of the Motif widget
functionality to Microsoft Windows. To use WwCallback, you must refer to the
OSF/Motif Programmer’s Reference to obtain callback reasons. Because Motif
widgets are only partly implemented for Windows, some callback reasons are not
available for use in Windows applications.

To use a Motif callback reason in PV-WAVE, remove the XmN or XtN prefix. For
example:

Use of the client_data parameter is optional in the application. It can specify some
application-defined data to be passed to the callback procedure when the callback
is invoked. If client_data is a local variable (defined only in the current procedure),
a copy of that variable is created and passed by value. If client_data is a global vari-
able (defined in a Common Block), it is passed by reference.

See Also

WtAddCallback

WwCommand Function
Creates a command window.

Usage

command = WwCommand(parent, enteredCallback, doneCallback)

Input Parameters

parent — The parent widget’s ID.

enteredCallback — A string containing the name of the callback routine that is
executed when a command is entered and confirmed (the user presses <Return>).

Motif Reason WAVE Widget Reason

XmNactivateCallback activateCallback

244 Application Developer’s Guide

doneCallback — A string containing the name of the callback routine that is exe-
cuted when the command window is destroyed.

Returned Value

command — The widget ID of the command window.

Keywords

Maximum — Specifies the maximum number of items that can be placed in the
command history list.

Name — A string specifying the command widget name. This string is a part of a
resource specification for the command window prompt. The Name keyword can
be used in place of the Prompt keyword, although Prompt will take precedence if
both are used. (Default: command.)

Position — Specifies the position of the upper-left corner of the command window
on the screen.

Prompt — A string containing the prompt for the WwCommand widget.

Shell_name — A string specifying the name of the top-level widget, or
TopLevelShell as part of the resource specification. (Default: commandshell.)

Title — Specifies a string containing the command window title.

Visible — Specifies the maximum number of command history items that are
visible.

Width — Specifies the width of the command window.

Color/Font Keywords

Background — Specifies the background color name.

Font — Specifies the name of the font used for text.

Foreground — Specifies the foreground color name.

Get/Set Value

getvalue — Gets a string array containing the list of commands entered, from the
oldest to newest command.

setvalue — Sets a new command in the text input field.

WwCommand Function 245

Callback Parameters

Any command widget callback procedure must have the following two parameters:

container — Container widget ID.

wid — Popup window widget ID.

Discussion

A command window is a popup window. This means that it cannot be the child of
the top-level shell or the layout widget. Usually, a command widget is activated by
a pushbutton or menu button, as in the example below.

A command window provides:

• A text input field where the user can enter text, such as a command or a label.

• A scrolling command-history list. Whenever the user enters a command in the
text input field and presses <Return>, a callback is executed and the command
text is placed on the history list. The user can re-enter a previously entered
command by clicking on it in the command history list.

If the user double-clicks on a command in the command history list, the call-
back is automatically executed and appended to the end of the list.

• A label for the text input field.

If Prompt is not used, the function looks for a command window prompt in a
resource specification. Part of the resource specification can be specified using the
Name keyword, otherwise the default is the *.command.promptString
resource (where promptString is the attribute).

TIP The Prompt keyword provides a method for “hard-coding” the command win-
dow prompt in the application. For greater flexibility, create your resource file
using a text editor, and load the resource containing the prompt string using WtRe-
source. The Name keyword can then be used in the WwCommand calling sequence
to specify the command widget name in the resource specification.

Example 1

This example creates a button labeled Command. When this button is selected, the
CbuttonCB callback is activated and a command window is created. When a user
enters text in the text input field and presses <Return>, the callback CommandOK

246 Application Developer’s Guide

is executed. When the user exits the command box, the CommandDone callback
is executed.

Enter the callback procedures into a file, and compile the procedures with the .RUN
command. Then, enter the widget commands at the WAVE> prompt. To dismiss the
widgets, select the appropriate function (such as Close) from the window manager
menu of the Command button (the parent widget).

Callback Procedures

PRO CbuttonCB, wid, data

command = WwCommand(wid, ’CommandOK’, $
 ’CommandDone’, Position=[300,300], $
 Title=’Command Entry Window’)

END

PRO CommandOK, wid, shell

value = WwGetValue(wid)

PRINT, value

END

PRO CommandDone, wid, shell

status = WwSetValue(shell, /Close)

END

Widget Commands

top=WwInit(’example2’, ’Examples’, layout)

button=WwButtonBox(layout, ’Command’, ’CbuttonCB’)

status=WwSetValue(top, /Display)

WwLoop

Example 2

A typical resource specification for the command window prompt used in
WwCommand is:

myapp.commandshell.command.promptString: Enter a command:

See Also

For more information about how to write an application program based on WAVE
Widgets, refer to Chapter 5, Using WAVE Widgets.

WwControlsBox Function 247

For additional information on the color and font keywords, see Setting Colors and
Fonts on page 201.

For information on Get and Set values, see Setting and Getting Widget Values on
page 206.

WwControlsBox Function
Creates a box containing sliders.

Usage

controls = WwControlsBox(parent, [labels,] range, changedCallback)

Input Parameters

parent — The widget ID of the parent widget.

labels — (optional) A string or array of strings containing the text used to label the
sliders. If the labels parameter is not defined or is defined as a null string or an array
of null strings, the function looks for slider labels in a resource specification (see
Discussion).

range — An array of values specifying the minimum and maximum slider values.

changedCallback — A string containing the name of the callback routine that is
executed when the value of a slider changes.

Returned Value

controls — The widget ID of the controls box widget.

Input Keywords

Border — Specifies the width in pixels of the controls box and slider borders.

Center — An array specifying the position of the left and right edge of sliders as a
percentage of controls box width. By default, buttons are spaced evenly in the box.

Drag — If present and nonzero, the callback procedure is called while the slider is
being dragged.

Float — Lets you display a floating-point slider, with ranges that include implied
decimal numbers. This keyword specifies the number of digits that appear after the

248 Application Developer’s Guide

decimal point. For example, to display a floating-point slider with the range 0.5 to
12.5, use:

controls=WwControlsBox(parent, ’myslider’,[5, 125], $
’mycallback’, Float=1)

The decimal point is implied in that it is used for display purposes only. If the user
chooses a slider value of 5.7, the value returned to the callback is 57. The value of
Float can be obtained through the Userdata keyword of the WwGetValue function.
Thus, you can obtain the implied decimal position that was used in a WwControls-
Box function. For example:

PRO mycallback, wid, which
 ndec = WwGetValue(wid, /Userdata)
 value = WwGetValue(wid)
 PRINT, ’User Selected Value: ’, Float(value)/10.0^ndec

NOTE If you pass floating point values to the range parameter, be sure that you
set the Float keyword as well. Otherwise, the value returned by the function will
be unexpected.

Form — When present and nonzero, sliders are placed in a form layout and all
specified attachment keywords are honored (i.e., /Left, /Right, /Top, /Bottom). By
default, sliders are placed in a row/column layout.

Height — Specifies the height of the sliders. (Unix only.)

Horizontal — When present and nonzero, creates a horizontally aligned row of
sliders.

Hslider — When present and nonzero, creates horizontally oriented sliders.

Layout_name — Specifies the name of the layout widget. This name is part of the
resource specification. The default name for Layout_name depends on other key-
words specified in the WwControlsBox usage.

If Form or Horizontal or Vertical are used to organize the sliders, the
Layout_name default is controls.

If the Form widget is used to organize the slider and Text is also specified,
the default for Layout_name is ctrlform.

Measure — Specifies the number of columns of sliders (for a vertical box) or rows
(for a horizontal box).

Name — Specifies an array of strings containing the names of the Scale widget
and, optionally, the TextField widget if Text is also specified. The Name keyword
can be used in place of the labels parameter, although labels (if other than an array

WwControlsBox Function 249

of null strings) will take precedence if both are given.
(Default: slider_0, text_0, slider_1, text_1, ...,
slider_n, text_n.)

Position — If the controls box widget is to be placed in a bulletin board layout, use
this keyword to specify the x, y coordinates of the controls box widget within the
bulletin board.

Spacing — Specifies the space between sliders.

Text — When present and nonzero, an input text field is created for each slider.

Vertical — When present and nonzero, creates a vertically aligned column of
sliders.

Vslider — When present and nonzero, creates vertically oriented sliders.

Width — Specifies the width of the sliders. (Unix only.)

Output Keywords

Sliders — Returns an array of slider widget IDs.

Color/Font Keywords

Background — Specifies the background color name.

Basecolor — Specifies the base color.

Font — Specifies the name of the font used for slider text.

Foreground — Specifies the foreground color name.

Attachment Keywords

Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the controls box widget is attached to the top of the specified widget. If no
widget ID is specified (for example, /Bottom), then the bottom of the controls
box widget is attached to the bottom of the parent widget.

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the controls box widget is attached to the right side of the specified widget. If no
widget ID is specified (for example, /Left), then the left side of the controls box
widget is attached to the left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the controls box widget is attached to the left side of the specified widget. If no

250 Application Developer’s Guide

widget ID is specified (for example, /Right), then the right side of the controls
box widget is attached to the right side of the parent widget.

Top — If a widget ID is specified (for example, Top=wid), then the top of the con-
trols box widget is attached to the bottom of the specified widget. If no widget ID
is specified (for example,/Top), then the top of the controls box widget is attached
to the top of the parent widget.

Get/Set Value

getvalue — Gets the value of the selected slider.

setvalue — Sets the value of the selected slider.

Callback Parameters

Any controls box callback procedure must have the following two parameters:

wid — Slider widget ID.

index — Index value of the slider that has changed (1 – n).

Discussion

A “controls box” is a special widget in which individual sliders are arranged. If
only one slider is requested, that slider’s widget ID is returned. By default, the slid-
ers are placed in a row/column format.

A slider allows the user to change a value interactively by moving the slider handle
back and forth within a predefined range. You have the option of including a text
input field with each slider. The text input field lets the user enter an exact value for
the slider.

The widget name portion of the slider label resource specification can be specified
using the Name keyword.

TIP The labels parameter provides a method for “hard-coding” the slider labels in
the application. For greater flexibility, create your slider label resource file using a
text editor, and load the resources containing the slider labels and text strings using
WtResource. The Name keyword can then be used in the WwControlsBox calling
sequence to specify the slider (and text) widget names.

WwControlsBox Function 251

Example 1

This example creates a box with three sliders labeled Pressure, RPM, and Temper-
ature. Whenever the user moves one of the sliders, the callback procedure is
executed.

Enter the callback procedure into a file, and compile the procedure with the .RUN
command. Then, enter the widget commands at the WAVE> prompt. To dismiss the
controls box, select the appropriate function (such as Close) from the window man-
ager menu.

Callback Procedure

PRO SliderCB, wid, which

CASE which OF

1: PRINT,’First Slider Moved’

2: PRINT,’Second Slider Moved’

3: PRINT,’Third Slider Moved’

ENDCASE

value = WwGetValue(wid)

PRINT, value

END

Widget Commands

top=WwInit(’ww_ex22’, ’Examples’, layout)

labels=[’Pressure’,’RPM’,’Temperature’]

ranges=[0,100,2000,4000,50,150]

controls = WwControlsBox(layout, labels, $
 ranges, ’SliderCB’,/Vertical,/Text, $
 Foreground=’gray’,Background=’white’, $
 Basecolor=’blue’)

status=WwSetValue(top, /Display)

WwLoop

Example 2

A typical resource specification used in WwControlsBox is:

myapp.layout.sliderform.xslider.titleString: X Rotation

252 Application Developer’s Guide

See Also

For more information about how to write an application program based on WAVE
Widgets, refer to Chapter 5, Using WAVE Widgets.

For additional information on the color and font keywords, see Setting Colors and
Fonts on page 201.

For additional information on attachment keywords, see Form Layout: Attachments
on page 170.

For information on Get and Set values, see Setting and Getting Widget Values on
page 206.

WwDialog Function
Creates a blocking or nonblocking dialog box.

Usage

wid = WwDialog(parent, [label,] OKCallback, CancelCallback, HelpCallback)

Input Parameters

parent — The widget ID of the parent widget.

label — (optional) A string containing the label for the input field. If the label
parameter is either not defined or is defined as a null string, the function looks for
the dialog label in a resource specification (see Discussion).

OKCallback — A string containing the name of the callback that is executed when
the OK button is selected.

CancelCallback — A string containing the name of the callback that is executed
when the Cancel button is selected.

HelpCallback — A string containing the name of the callback that is executed
when the Help button is selected.

Returned Value

wid — The ID of the dialog widget.

WwDialog Function 253

Keywords

Block — If this keyword is present and nonzero, the dialog box is blocking (the
default).

Cols — Specifies the number of columns in the text input field.

Help — Use this keyword to specify a help topic when the HelpCallback parameter
is not specified. This keyword can specify a two-element or one-element string
array. If it is a two-element array, the first element is the name of a help topic and
the second is the filename of the help file containing the topic. A one-element array
specifies only the name of a help topic. In this case the default help file is used. For
information on the location of the default help file, refer to the HELP command (in
the PV-WAVE Reference). The specified help topic is displayed in the online help
viewer when the Help button is pressed.

Name — A string specifying the name of the PromptDialog widget. The keyword
Name can be used in place of the label parameter, although label (if other than a
null string) will take precedence if both are given. (Default: dialog.)

Nonblock — If this keyword is present an nonzero, the dialog box is not blocking.
(This keyword has no effect under Microsoft Windows.)

Text — Specifies a string containing the initial text in the text input field.

Title — Specifies a string containing the dialog box title.

Color/Font Keywords

Background — Specifies the background color name.

Font — Specifies the name of the font used for text.

Foreground — Specifies the foreground color name.

Get/Set Value

getvalue — Gets a string containing the text entered in the text input field.

setvalue — Sets a string in the text input field.

Callback Parameters

Any dialog box callback procedure must have the following two parameters:

wid — Command widget ID.

text — Text input field widget ID.

254 Application Developer’s Guide

Discussion

A dialog box is a popup window. This means that it cannot be the child of the top-
level shell or the layout widget. Usually, a dialog box widget is activated by a push-
button or menu button, as in the example below.

Part of the dialog label resource can be specified using the Name keyword, other-
wise the default is the *.dialog.selectionLabelString resource (where
selectionLabelString is the attribute).

TIP The label parameter provides a method for “hard-coding” the input field label
in the application. For greater flexibility, create your resource file using a text edi-
tor, and load the resource containing the dialog label string using WtResource. The
Name keyword can then be used in the WwDialog calling sequence to specify the
dialog widget name in the resource specification.

Example 1

This example creates a button labeled Dialog Box. When the user selects this button,
a dialog box appears. When the user enters text in the dialog box and presses
<Return>, DialogOK is executed. When the user cancels the dialog box, the sec-
ond callback routine, DialogCancel, is executed.

Enter the callback procedure into a file, and compile the procedure with the .RUN
command. Then, enter the widget commands at the WAVE> prompt. To dismiss
both widgets, select the appropriate function (such as Close) from the window
manager menu of the Dialog Box button (the parent widget).

Callback Procedures

PRO DbuttonCB, wid, data

select=WwDialog(wid,’Type something:’,$
’DialogOK’,’DialogCancel’, Title=’Type’)

END

PRO DialogOK, wid, text

PRINT,’Dialog OK’

value = WwGetValue(text)

PRINT, value

END

PRO DialogCancel, wid, data

PRINT,’Dialog Cancel’

WwDrawing Function 255

END

Widget Commands

top=WwInit(’ww_ex23’, ’Examples’, layout)

button=WwButtonBox(layout, ’Dialog Box’, ’DbuttonCB’)

status=WwSetValue(top, /Display)

WwLoop

Example 2

A typical resource specification for the dialog prompt used in WwDialog is:

myapp.dialog.selectionLabelString: Enter some text:

See Also

For more information about how to write an application program based on WAVE
Widgets, refer to Chapter 5, Using WAVE Widgets.

For additional information on the color and font keywords, see Setting Colors and
Fonts on page 201.

For information on Get and Set values, see Setting and Getting Widget Values on
page 206.

WwDrawing Function
Creates a drawing area, which allows users to display graphics generated by PV-
WAVE.

Usage

wid = WwDrawing(parent, windowid, drawCallback, wsize, dsize)

Input Parameters

parent — The widget ID of the parent widget.

windowid — The window ID of the PV-WAVE graphics window. When the win-
dow index is undefined or between zero and 31, the first free window index
(ascending) is used and returned as windowid. (For information on window IDs,
see the WINDOW procedure.)

256 Application Developer’s Guide

drawCallback — A string containing the name of the PV-WAVE callback routine
that is executed when the drawing area is exposed to display the graphics.

NOTE Avoid placing any calls directly in the drawCallback procedure that could
create a window, such as a dialog box, in front of the drawing area widget. The rea-
son for this is related to the way in which the X server handles backing store — the
server’s method of repainting windows that are hidden (either entirely or partially)
and then re-exposed. If your X server does not support backing store, or if it is run-
ning out of memory, it calls on your application to repaint windows. If the
drawCallback procedure creates a graphics window and then places another win-
dow, such as a dialog box in front of the graphics window, when you dismiss the
dialog box the X server calls the drawCallback procedure to repaint the drawing
area, resulting in an infinite loop.

wsize — A vector containing two long integers that represent the width and height
of the drawing area window. The window size is limited to 32767 pixels on a side,
or the available memory for the pixmap, whichever is less.

dsize — A vector containing two long integers that represent the width and height
of the image to be displayed in the drawing area. If this is larger than wsize, you
can use the scroll bars to move the image around in the display window.

Returned Value

wid — The ID of the drawing area widget.

Keywords

Area — Returns the drawing area widget’s ID.

Border — Specifies the width of the borders in pixels for the parent widget and the
child widgets. The default is 0.

Layout_name — Specifies the name of the Form or ScrolledWindow container
widget used to hold the drawing area widget. The Layout_name specified is the top-
level widget layout name used as part of the resource specification. (Default:
drawindow.)

Name — A string containing the name of the DrawingArea widget. The Name
specified is the widget name used as part of the resource specification. (Default:
draw.)

NoMeta — (Windows only) Turns metafiles off for the window that contains the
drawing area. Use this keyword when running animations or displaying images.

WwDrawing Function 257

A metafile is an internal, vector-based record of all the graphics commands sent to
a window. By default, a metafile is kept for each window to speed the redrawing of
the window when it is resized. The metafile is also used when printing to avoid res-
olution problems that occur when printing a bitmap image.

Noscroll — If present and nonzero, the drawing area does not use scroll bars. The
drawing area window is created the same size as the drawing area. In other words,
the value of dsize equals wsize.

Position — If the drawing box widget is to be placed in a bulletin board layout, use
this keyword to specify the x, y coordinates of the drawing box widget within the
bulletin board.

Color Keywords

Background — Specifies the background color name.

Foreground — Specifies the foreground color name.

Attachment Keywords

Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the drawing box widget is attached to the top of the specified widget. If no
widget ID is specified (for example, /Bottom), then the bottom of the drawing
box widget is attached to the bottom of the parent widget.

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the drawing box widget is attached to the right side of the specified widget. If no
widget ID is specified (for example, /Left), then the left side of the drawing box
widget is attached to the left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the drawing box widget is attached to the left side of the specified widget. If no
widget ID is specified (for example, /Right), then the right side of the drawing
box widget is attached to the right side of the parent widget.

Top — If a widget ID is specified (for example, Top=wid), then the top of the
drawing box widget is attached to the bottom of the specified widget. If no widget
ID is specified (for example, /Top), then the top of the drawing box widget is
attached to the top of the parent widget.

Get/Set Value

getvalue — Gets the window ID of the drawing area widget.

258 Application Developer’s Guide

setvalue — Sets a two-element vector containing the width and height of the draw-
ing area.

Callback Parameters

Any drawing area widget callback procedure must have the following two
parameters:

wid — Drawing area widget ID.

index — PV-WAVE window index.

Discussion

The window size is limited to 32767 pixels on a side, or the available memory for
the pixmap, whichever is less.

Example

This example creates a widget that displays an image. Whenever the drawing area
widget is displayed, the callback is executed. In this case, the callback opens and
reads an image file.

Enter the callback procedure into a file, and compile the procedure with the .RUN
command. Then, enter the widget commands at the WAVE> prompt. To dismiss the
drawing area widget, select the appropriate function (such as Close) from the win-
dow manager menu.

Callback Procedure

PRO DrawCB, wid, data

COMMON draw, img

PRINT, ’Draw’

TV, img

END

Widget Commands

top=WwInit(’ww_ex24’, ’Examples’, layout)

COMMON draw, img

LOADCT, 5, /SILENT

img = BYTARR(512,512)

OPENR,1, !Data_Dir + ’head.img’

WwFileSelection Function 259

READU,1,img

CLOSE, 1

draw=WwDrawing(layout, 1,’DrawCB’, [256,256], [512,512])

status=WwSetValue(top, /Display)

WwLoop

See Also

For more information about how to write an application program based on WAVE
Widgets, refer to Chapter 5, Using WAVE Widgets.

For additional information on the color and font keywords, see Setting Colors and
Fonts on page 201.

For additional information on attachment keywords, see Form Layout: Attachments
on page 170.

For information on Get and Set values, see Setting and Getting Widget Values on
page 206.

WwFileSelection Function
Creates a file selection widget, which lets the user display the contents of directo-
ries and select files.

Usage

wid = WwFileSelection(parent, OKCallback, CancelCallback [, HelpCallback])

Input Parameters

parent — The widget ID of the parent widget.

OKCallback — A string containing the name of the callback that is executed when
the OK button is selected.

CancelCallback — A string containing the name of the callback procedure that is
called when the file selection widget is dismissed.

HelpCallback — (optional) A string containing the name of the callback routine
that is called when the Help button is selected. The Help keyword can be used
instead of this parameter.

260 Application Developer’s Guide

Returned Value

wid — The file selection widget ID.

Keywords

Block — Creates a blocking file selection window (the default).

Dir — Specifies a string containing the directory path.

File — Specifies a string containing the default file selection.

Help — Use this keyword to specify a help topic when the HelpCallback parameter
is not specified. This keyword can specify a two-element or one-element string
array. If it is a two-element array, the first element is the name of a help topic and
the second is the filename of the help file containing the topic. A one-element array
specifies only the name of a help topic. In this case the default help file is used. For
information on the location of the default help file, refer to the HELP command (in
the PV-WAVE Reference). The specified help topic is displayed in the online help
viewer when the Help button is pressed.

Name — A string containing the name of the file selection box widget. The Name
specified is the widget name used as part of the resource specification. (Default:
file.)

NonBlock — Creates a nonblocking file selection window. (This keyword has no
effect under Microsoft Windows.)

Pattern — Specifies the search pattern used in combination with the directory in
determining files to be displayed.

Position — Specifies the position of the upper-left corner of the file selection win-
dow on the screen in pixels.

Shell_name — Specifies the name of the TopLevelShell container widget used to
hold the file selection box widget. The Shell_name specified is the top-level widget
shell name used as part of the resource specification. (Default: fileshell.)

Title — Specifies a string containing the file selection widget’s title.

Color/Font Keywords

Background — Specifies the background color name.

Font — Specifies the name of the font used for text.

Foreground — Specifies the foreground color name.

WwFileSelection Function 261

Get/Set Value

getvalue — Gets the selected file specification.

setvalue — Sets a three-element array of strings:

Callback Parameters

Any file selection widget callback procedure must have the following two
parameters:

wid — File selection widget ID.

shell — The ID of the top-level shell.

Discussion

A file selection widget is a popup window. This means that it cannot be the child
of the top-level shell or the layout widget. Usually, a file selection widget is acti-
vated by a pushbutton or menu button, as in the example below.

Example

This example creates a button labeled File Selection. When the user selects this but-
ton, a file selection widget appears. When the user selects a file, the callback is
executed.

Enter the callback procedure into a file, and compile the procedure with the .RUN
command. Then, enter the widget commands at the WAVE> prompt. To dismiss the
widget, select the appropriate function (such as Close) from the window manager
menu of the File Selection button (the parent widget).

Callback Procedure

PRO FbuttonCB, wid, data

file = WwFileSelection(wid,’FileOK’, ’FileCancel’, $
Title=’Search’)

END

0 Determines the files and directories displayed in the directory list.
For example, /usr/home/mydir/*.c.

1 Directory: specifies the base directory.

2 Pattern: specifies the search pattern to be used to select files.

262 Application Developer’s Guide

PRO FileOK, wid, shell

value = WwGetValue(wid)

PRINT, value

status = WwSetValue(shell, /Close)

END

PRO FileCancel, wid, shell

PRINT, ’File Cancel’

END

Widget Commands

top = WwInit(’ww_ex25’, ’Examples’, layout)

button = WwButtonBox(layout, ’File Tool’, ’FbuttonCB’)

status = WwSetValue(top, /Display)

WwLoop

See Also

For more information about how to write an application program based on WAVE
Widgets, refer to Chapter 5, Using WAVE Widgets.

For additional information on the color and font keywords, see Setting Colors and
Fonts on page 201.

For information on Get and Set values, see Setting and Getting Widget Values on
page 206.

WwGenericDialog Function
Creates a generic dialog box that can be filled with custom widgets.

Usage

widget = WwGenericDialog(parent, layout [, labels] [, callback])

Input Parameters

parent — The parent widget’s ID.

WwGenericDialog Function 263

labels — (optional) A string or an array of strings containing the text that is to
appear on the buttons in the Action area of the dialog box. This parameter deter-
mines the number of buttons in the Action area, and the text for the buttons.

callback — (optional) A string containing the name of the callback routine.

Output Parameters

layout — The widget ID of the layout widget (i.e., the widget returned by WwLay-
out). The layout widget must be filled in by the calling program.

Keywords

Block — If nonzero, the dialog box is blocking.

Board — If nonzero, a “bulletin board” layout is created.

Buttons — If specified, returns the WwButtonBox button widget IDs. For more
information, see the WwButtonBox description.

Dialog_Name — A string containing the name of the generic dialog box.

Dismiss — An array of integers indicating which buttons in the Action area close
the generic dialog box.

Form — If nonzero, a form layout is created.

Help — A string containing the name of an online Help Topic. If Help is specified,
the right-most (last) Action area button is the Help button, regardless of its name or
label. The Help keyword can also be specified as a two-element string array, whose
first element is the help topic and whose second element is the Help file name.

Horizontal — If nonzero, child widgets are aligned horizontally within the layout
widget. This keyword is only used for row/column layouts.

Layout_Name — An array of strings containing the names of the top-level and
Action area widgets.

Name — An array of strings containing the names of the Action area buttons. If
the number of elements in Name is less than the number of buttons, or if the labels

1 Indicates the button closes the dialog box.

0 Indicates the button doesn’t close the generic dialog
box.

264 Application Developer’s Guide

parameter was not specified, the remaining buttons are assigned default names of
the form button_n, where n is the button index.

NoDestroy — If nonzero, the dialog box widget is hidden instead of destroyed
when the Cancel button is selected.

NonBlock — If nonzero, the dialog box is not blocking. (This keyword has no
effect under Microsoft Windows.)

Scroll — If nonzero, places scroll bars on the layout widget. If this keyword is
specified, you must also provide the following parameters:

w — Sets the width of the scrolled window.

h — Sets the height of the scrolled window.

Spacing — Specifies the amount of space in pixels between child widgets in the
layout. This keyword is only used for row/column layouts. (Default: 0)

Title — A string containing the title to appear on the border of the dialog box.

Vertical — If nonzero, child widgets are aligned vertically within the parent wid-
get. This keyword is only used for row/column layouts.

Color/Font Keywords

Background — Specifies the background color name.

Font — Specifies the name of the font used for text.

Foreground — Specifies the foreground color name.

Callback Parameters and Returned Value

A generic dialog box callback must be a function containing the following two
parameters:

wid — The widget ID of a button in the Action area.

index — The index of the Action area button pressed (1 – n).

Returned Values

0 Indicates the dialog box behaves according to the Dismiss key-
word.

WwGenericDialog Function 265

Discussion

The generic dialog box contains three major components:

• Action area — Contains a set of horizontal buttons at the bottom of the dialog
box.

• Separator — Placed above the Action area.

• Layout area — An area that holds custom widgets. This area’s widget ID is
returned by the output parameter layout.

Example

This example creates a dialog box containing some simple slider controls. Call-
backs perform some simple actions whenever a slider is moved by the user.

Enter the following code into a file, and compile it with the .RUN command. To
run the example, enterWWGENERICDIALOG_TEST2 at theWAVE> prompt. Click
the Create button in the main window to display the dialog box.

Button callback for the dialog created with WwGenericDialog.

This function always returns 0. If a 1 was returned instead of 0, the dialog would
not be destroyed even if the Dismiss flag was set for the button pressed. This allows
the callback to pop up an alert and avoid destroying the dialog if an error occurred.

FUNCTION SimpleDialogCB, wid, data

 PRINT, ’SimpleDialogCB’, wid, data

 RETURN, 0

END

Now, create the slider callback for the sliders in the dialog created with the
WwGenericDialog function. This callback prints out the slider widget ID and the
new value.

PRO Slidercallback, wid, data

 value = WwGetValue (wid)

 PRINT, ’slidercallback’, wid, data, value

END

1 Indicates the dialog box is not dismissed regardless of the
Dismiss keyword.

266 Application Developer’s Guide

The next callback creates the dialog using the WwGenericDialog function. The
dialog created contains three sliders (Red, Green, and Blue), and three buttons (OK,
Apply, and Cancel).

PRO wwgenericdialog_button_cb, wid, which

IF which EQ 2 THEN BEGIN

topshell = WwGetValue (wid, /Userdata)

status = WwSetValue (topshell, /Close)

RETURN

ENDIF

dialog_wid = WwGenericDialog (wid, layout, $
[’OK’, ’Apply’, ’Cancel’, ’Help’], $
’SimpleDialogCB’, $
/Form, $
Dismiss = [1, 0, 1], $
Title = ’Simple Dialog’, $
Help = ’WwGenericDialog’)

; Create the generic dialog.

controls = WwControlsBox(layout, $
[’Red’, ’Green’, ’Blue’], $
[0, 255, 0, 255, 0, 255], $
’SliderCallback’, $
/Left, /Right, /Top, /Bottom, $
/Vertical)

; Fill in the dialog layout.

status = WwSetValue (dialog_wid, /Show)

; Manage the dialog.

END

This is the destroy callback for the top-level shell.

PRO wwgenericdialog_destroy_cb, wid, data

 PRINT, ’wwgenericdialog_destroy_cb’, wid, data

END

This is the main entry point for the test program. It creates a window with a button
that creates a new dialog with the WwGenericDialog function when the button is
pressed.

PRO Wwgenericdialog_test2

topshell = WwInit (’wwgenericdialog_test2’, $

’Appl’, workarea, $

’Wwgenericdialog_destroy_cb’, $

background = background, $

foreground = foreground, $

WwGetButton Function 267

title=new_title, position=position)

; Create the top-level shell, and initialize WAVE Widgets.

buttonbox=WwButtonBox (workarea, [’Create...’, ’Quit’], $

’wwgenericdialog_button_cb’, $

buttons = buttons)

; Create the buttons.

FOR i=0, N_ELEMENTS(buttons)-1 DO BEGIN

status = WwSetValue (buttons(i), Userdata = topshell)

; Keep the top-level shell in button user data so we can use it later.

ENDFOR

status = WwSetValue(topshell, /display)

 WwLoop

; Manage the top-level shell, and start looping.

END

See Also

WoGenericDialog, WwDialog

WwGetButton Function
Obtains the index of a pressed or released button passed as an event structure by a
WAVE Widgets event handler.

Usage

button = WwGetButton(event)

Input Parameter

event — The event handle received by the event handler.

Returned Value

button — The index of the button that was pressed or released. If the function call
fails, the value –1L is returned.

268 Application Developer’s Guide

Keyword

State — Returns a string array containing the state of all the buttons just before the
event.

Discussion

The following are examples of strings found in the State array: ’Button1’,
’Button2’, ..., ’ButtonN’ (indicating which button was pressed); and
’Shift’, ’Control’, ’Lock’, ’Mod1’, ..., (button modifiers).

Example

For an example using WwGetButton, see the example for the WwGetPosition
function.

See Also

WwGetKey, WwGetPosition

WwGetKey Function
Obtains the ASCII value of a pressed or released key passed as an event structure
by a WAVE Widgets event handler.

Usage

key = WwGetKey(event)

Input Parameters

event — The event handle received by the event handler.

Returned Value

key — A string containing the ASCII character of the released key. If the function
call fails, an empty string is returned.

WwGetKey Function 269

Keywords

Keysym — Returns a value associated with the key pressed.

UNIX USERS For Motif, Keysym returns a long value (XKeysym) associated
with the key pressed. Keysym is an integer value unique to a particular key on the
keyboard. This value can be used to identify function key presses.

Windows USERS For Windows, Keysym returns the long value of the virtual
key associated with the key pressed (the result of the VkKeyScan procedure). For
a list of virtual key codes and the keys to which they map, see Appendix E, Virtual
Keys or refer to the Win32 Programmer’s Reference.

State — If specified, returns a string array containing the state of all the modifier
keys just before the event.

Discussion

The following are examples of modifier key names found in the State array:
’Shift’, ’Control’, ’Lock’, ’Mod1’, ..., (indicating which key was
pressed); and ’Button1’, ’Button2’, ..., ’ButtonN’ (key modifiers).

The Keysym keyword is used in situations where the pressed key must be identified.
The include file <X11/keysymdef.h> contains a complete Keysym listing.

Example

For an example using WwGetKey, see the example for the WwGetPosition
function.

See Also

WwGetButton WwGetPosition

270 Application Developer’s Guide

WwGetPosition Function
Obtains the coordinates of a selected point inside a widget. The selected point coor-
dinates are passed in an event structure by a WAVE Widgets event handler.

Usage

point = WwGetPosition(event)

Input Parameters

event — The event handle received by the event handler.

Returned Value

point — A two-element array containing the position obtained from the event
parameter. If WwGetPosition fails, [-1,-1] is returned.

Keywords

None.

Example

This example demonstrates the use of a number of WAVE Widgets in a simple
application. The WAVE Widgets used in this example include: WwHandler,
WwGetPosition, WwGetKey, WwSetCursor, and WwGetButton.

Two event handler procedures, DrawHandler and DrawKeyHandler, are registered
with a drawing area widget:

• The DrawHandler procedure is called when a mouse button is pressed while
the pointer is in the drawing area. DrawHandler prints the position of the
pointer when the mouse button is pressed, which button was pressed, and the
state of the modifier keys using the WwGetPosition and WwGetButton func-
tions. Finally, DrawHandler removes itself from the drawing area widget.

• The DrawKeyHandler procedure is called when a key is pressed while the
pointer is in the drawing area. DrawKeyHandler prints the ASCII character of
the key, the state of the modifier keys, and the ASCII value of the key using the
WwGetKey function.

WwGetPosition Function 271

If the key pressed is <w>, the drawing area cursor changes to the “wait cursor”
(WwSetCursor). If the key pressed is <n> the drawing area cursor changes to
the “default” cursor (WwSetCursor).

To run this example, enter the callback procedures into a file, and compile the pro-
cedure with the .RUN command. Then, enter the widget commands at the WAVE>
prompt. To dismiss the drawing area widget, select the appropriate function (such
as Close) from the window manager menu.

Callback Procedures
PRO DrawHandler, wid, shell, event

; This event handler procedure performs an action when a button is pressed.
COMMON draw, top, img

PRINT, ’Position: ’, WwGetPosition(event)

; Print the position of the button press.
PRINT, WwGetButton(event, State = state)

; Print the button.
PRINT, ’State: ’, state

; Print the modifier keys.
h=WwHandler(wid, ’DrawHandler’, /Remove)

; Remove the handler.

END

PRO DrawKeyHandler, wid, shell, event

; This event handler procedure performs an action when a key is pressed.
COMMON draw, top, img

key = WwGetKey(event, State = state, Keysym = keysym)

PRINT, ’Key: ’, key, ’State: ’, state, ’Keysym: ’, keysym

; Print the ASCII value of the key, state of the modifier keys, and key symbol.
IF key EQ ’w’ THEN status = WwSetCursor(wid, /Wait)

IF key EQ ’n’ THEN status = WwSetCursor(wid, /Default)

; If the key is ‘w’, set the wait cursor; if the key is ‘n’ set the default cursor.

END

PRO DrawCB, wid, data

; A callback procedure to display an image.
 COMMON draw, top, img

 TV, img

END

272 Application Developer’s Guide

Widget Commands
COMMON draw, top, img

top=WwInit(’ww_ex100’, ’Examples’, layout)

LOADCT, 5, /SILENT

img=BYTARR(512,512)

OPENR,1, !Data_Dir + ’head.img’

READU,1,img

CLOSE, 1

draw=WwDrawing(layout, 1,’DrawCB’, [256,256], [512,512], $
Area = darea)

status = WwHandler(darea, ’DrawHandler’, ’ButtonPressMask’)

status = WwHandler(darea, ’DrawKeyHandler’, ’KeyPressMask’)

status=WwSetValue(top, /Display)

WwLoop

See Also

WwGetButton, WwGetKey

WwGetValue Function
Returns a specific value for a given widget.

Usage

value = WwGetValue(widget)

Input Parameters

widget — The widget for which you want the value.

Returned Value

value — The value returned from the widget.

WwGetValue Function 273

Keywords

Children — If nonzero, returns the widget IDs of the children of the widget spec-
ified by the widget parameter.

Class — If nonzero, returns the widget class of the widget specified by the widget
parameter.

Destroyed — Returns 1 if the given widget is being destroyed; otherwise returns 0.

Exists — If nonzero, returns 1 if widget exists, 0 if not.

Parent — If nonzero, returns the widget ID of the parent of the widget specified by
the widget parameter.

Position — Returns the position of the widget as a 2-element array: [x, y], where x
and y are a number of pixels.

Sensitive — Returns 1 if the widget is sensitive, or 0 if the widget is not sensitive.

Shown — Returns 1 if the widget is shown, or 0 if the widget is not visible.

Size — Returns the width and height of the widget as a 2-element array: [w, h] ,
where w and h are a number of pixels.

NOTE On shell widgets, the result of this keyword is always 1. This is because the
Xt Intrinsics functions XtPopdown() and XtPopup() are always used to hide or
show shell widgets, and it is not possible to determine whether a shell has been
popped down or not.

Userdata — Returns the value of the Userdata variable that was previously stored
with the WwSetValue function.

Discussion

See the Get Value section under each WAVE Widget function description to find
out what WwGetValue returns by default for each function. For example,
WwGetValue called with the ID of a list widget returns a string array containing
the selected items in the list.

Example

The following example demonstrates WwGetValue with the WwCommand func-
tion. WwGetValue returns a string array containing the commands entered in the
Command window. The callback routine CommandOK prints the value returned by

274 Application Developer’s Guide

WwGetValue whenever the user enters a command in the Command window and
presses <Return>.

Enter the callback procedures into a file, and compile the procedure with the .RUN
command. Then, enter the widget commands at the WAVE> prompt. To dismiss the
widget, select the appropriate function (such as Close) from the window manager
menu of the command window.

Callback Procedures
PRO CbuttonCB, wid, data

command = WwCommand(wid, ’CommandOK’, $
 ’CommandDone’, Position=[300,300], $
 Title=’Command Entry Window’)

END

PRO CommandOK, wid, shell

value = WwGetValue(wid)

print, value

END

PRO CommandDone, wid, shell

status = WwSetValue(shell, /Close)

END

Widget Commands
top=WwInit(’ww_ex26’, ’Examples’, layout)

button=WwButtonBox(layout, ’Command’, ’CbuttonCB’)

status=WwSetValue(top, /Display)

WwLoop

See Also

For more information about how to write an application program based on WAVE
Widgets, refer to Chapter 5, Using WAVE Widgets.

WwHandler Function 275

WwHandler Function
Adds or removes a WAVE Widgets event handler from a widget.

Usage

status = WwHandler(wid, handler [, mask [, userdata]])

Input Parameters

wid — The widget ID that the event handler is to be removed from or added to.

handler — The name of the event handler procedure.

mask — (optional) The mask for the event. This parameter must be specified if the
Add keyword is used.

userdata — (optional) Stores the value of the specified variable.

Returned Value

status — A value indicating success or failure of the addition or removal of the
event handler.

1 Indicates success.

0 Indicates failure.

Keywords

Add — Add an event handler for the event specified by the mask parameter. The
mask input parameter must be specified when the Add keyword is used.

Remove — Remove the specified event handler.

Event Handler Parameters

The following parameters are required for the event handler procedure:

wid — The ID of the widget from which the event handler is called.

userdata — Stores the value of the specified variable.

event — An opaque event handle to be used in subsequent calls to request event
data.

276 Application Developer’s Guide

Discussion

The mask parameter can be specified as a value (such as, ButtonPressMask), if you
include the Standard Library file wtxlib.pro using the @ (at) command:
@wtxlib.

One way to improve the portability of your application is to specify mask by name,
instead of value. An example of specifying by name is: ’ButtonPressMask’.

Example

For an example of WwHandler, see the example for the WwGetPosition function.

See Also

WtAddHandler, WwMultiClickHandler

WwInit Function
Initializes the WAVE Widgets environment, opens the display, creates the first top-
level shell, and creates a layout widget.

Usage

topshell = WwInit(app_name, appclass_name, workarea [, destroyCallback])

Input Parameters

app_name — A string containing the name of the application. This name can be
referenced in a resource file.

appclass_name — A string containing the application class name, which can be
the name of a resource file.

destroyCallback — (optional) A string containing the name of the callback that is
executed when the top-level shell is destroyed.

Output Parameters

workarea — The widget ID of the layout widget that is created inside of the top-
level shell.

WwInit Function 277

Returned Value

topshell — The widget ID of the top-level application shell.

Keywords

Board — If present and nonzero, a bulletin board layout is created inside the top-
level shell.

Border — Specifies the width in pixels of the borders for the layout widget and its
child widgets. Default is 0.

Colors — (Motif only) The maximum number of color table indices to be used.
Otherwise, PV-WAVE uses all of the available color indices.

ConfirmClose — A string containing the name of the procedure called when the
user selects the Close or Quit menu button from the window manager menu.

Form — If present and nonzero, a form layout is created inside the top-level shell.

Height — An integer specifying the height (in pixels) of the top level widget.

Horizontal — If present and nonzero, orients child widgets horizontally within the
layout widget (the default). Used with row/column layouts only. For more informa-
tion on layout widgets, see the WwLayout function.

Layout_name — Specifies the name of the layout widget. The Layout_name spec-
ified is part of the resource specification. The default for Layout_name depends on
other keywords specified in the WwInit usage.

If either Board or Form are specified, the Layout_name default is layout.

If either Horizontal or Vertical are specified, the default for Layout_name
is workarea.

Position — Specifies the position of the upper-left corner of the main window on
the screen.

Resource — Specifies a particular resource file to load into the resource manager
database. The resources in the file can be used to set attributes of the top-level shell
created by WwInit. The defaults are:

(UNIX) <wavedir>/bin/Wave.ad

(OpenVMS) <wavedir>:[BIN.WAVE.AD]

(Windows) <wavedir>\bin\Wave.ad

Where <wavedir> is the main PV-WAVE directory.

278 Application Developer’s Guide

Shell_name — Specifies the name of the TopLevelShell widget. The Shell_name
specified is the top-level widget shell name used as part of the resource specifica-
tion. (Default: application_name.)

Spacing — Specifies the amount of space between child widgets inside the layout.
Used with row/column layouts only. Default is 0. For more information on layout
widgets, see the WwLayout function.

Title — A string specifying a title for the shell.

UserData — A variable. If the ConfirmClose keyword is specified, the value of this
variable is passed to the Close or Quit callback procedure.

Vertical — If present and nonzero, orients child widgets vertically within the lay-
out widget. Used with row/column layouts only. For more information on layout
widgets, see the WwLayout function.

Width — An integer specifying the width (in pixels) of the top level widget.

Color/Font Keywords

Background — Specifies the default background color name for an application.

Font — Specifies the name of the default font used for text in an application.

Foreground — Specifies the default foreground color name for an application.

Discussion

Call this routine before the first use of a WAVE Widgets routine.

The ConfirmClose keyword lets you control what happens when the user selects
Close or Quit from the window manager menu. Normally, the window from which
the menu item was selected is destroyed; however, you might want to display a con-
firmation dialog box or take another action instead of simply allowing the window
to be destroyed. The callback procedure specified by ConfirmClose destroys the
window when appropriate.

The ConfirmClose procedure you specify accepts two parameters: wid and
user_data, where:

wid = The widget ID of the top-level shell of the application.

user_data = The variable specified via the User_Data keyword. If
User_Data is not specified, 0 (zero) is passed to the ConfirmClose routine.

If specified, your ConfirmClose routine must close the top-level shell of the appli-
cation. An example of a simple ConfirmClose routine which just closes the shell is:

WwLayout Function 279

PRO MyConfirmClose, wid, user_data

s = WwSetValue(wid, /Close)

END

If ConfirmClose is not specified, then the shell is simply closed.

Example

For examples showing the use of WwInit, see any of the WAVE Widgets widget-
creation routines, such as WwButtonBox, WwCommand, WwControlsBox,
WwList, and so on.

See Also

For more information about how to write an application program based on WAVE
Widgets, refer to Chapter 5, Using WAVE Widgets.

For additional information on the color and font keywords, see Setting Colors and
Fonts on page 201.

WwLayout Function
Creates a layout widget that is used to control the arrangement of other widgets.

Usage

layout = WwLayout(parent)

Input Parameters

parent — The widget ID of the parent widget.

Returned Value

layout — The widget ID of the layout widget.

Keywords

Board — If present and nonzero, the layout that is created is a “bulletin board”.

280 Application Developer’s Guide

Border — Specifies the width of the borders in pixels for the parent widget and the
child widgets. The default is 0.

Form — If present and nonzero, a form layout is created.

Frame — If nonzero, creates a frame widget with a layout child and returns the
widget ID for the layout.

Horizontal — If present and nonzero, aligns child widgets horizontally within the
layout widget (the default). This keyword is only used for row/column layouts.

Layout_name — Specifies the name of the layout widget used as part of the
resource specification. Layout_name names the Form widget (when used with
Form), the RowColumn widget (when used with Horizontal and/or Vertical), the
ScrolledWindow widget (when used with Scroll), or the BulletinBoard widget
(when used with Board). (Default: layout.)

Name — A string specifying the name of the frame widget created using the Frame
keyword. The frame widget name specified is part of the resource specification.
(Default: frame.)

Position — If the layout widget is to be placed in a bulletin board layout, use this
keyword to specify the x, y coordinates of the layout widget within the bulletin
board.

Scroll — If present and nonzero, places scroll bars on the layout widget. Specify a
width and height (e.g., Scroll=[w,h]) to set the width and height of the
scrolled window.

Spacing — Specifies the amount of space in pixels between child widgets in the
layout. The default is 0. This keyword is only used for row/column layouts.

Vertical — If present and nonzero, aligns child widgets vertically within the parent
widget. This keyword is only used for row/column layouts.

Color/Font Keywords

Background — Specifies the background color name.

Foreground — Specifies the foreground color name.

Attachment Keywords

Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the layout widget is attached to the top of the specified widget. If no widget
ID is specified (for example, /Bottom), then the bottom of the layout widget is
attached to the bottom of the parent widget.

WwLayout Function 281

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the layout widget is attached to the right side of the specified widget. If no widget
ID is specified (for example, /Left), then the left side of the layout widget is
attached to the left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the layout widget is attached to the left side of the specified widget. If no widget
ID is specified (for example, /Right), then the right side of the layout widget is
attached to the right side of the parent widget.

Top — If a widget ID is specified (for example, Top=wid), then the top of the lay-
out widget is attached to the bottom of the specified widget. If no widget ID is
specified (for example, /Top), then the top of the layout widget is attached to the
top of the parent widget.

Get/Set Value

getvalue — Gets the x, y position of the contents of the scrolled window.

setvalue — Sets the x, y position of the contents of the scrolled window.

Callback Parameters

None.

Discussion

The Board, Form, Vertical, Horizontal, and Scroll keywords are mutually exclu-
sive: you can only use one of them at a time.

A layout widget is a container that holds other widgets. The layout widget provides
different methods of arranging widgets, such as buttons, menus, sliders, and even
other layout widgets, inside the “container.” The three layout types are:

• Row/column — Widgets are arranged in rows and/or columns (the default).

• Form — Widgets are “attached” to one another inside the layout. Specified
with the Form keyword.

• Bulletin board — Widgets are positioned in the layout with x, y coordinates.
Specified with the Board keyword.

The layout widget can be the parent widget for each “child” widget it contains. If
a border is not specified with the Border keyword, the layout widget itself is not
visible to the user; only the widgets inside the layout are visible.

282 Application Developer’s Guide

For more detailed information on layouts, see Arranging Widgets in a Layout on
page 169.

Example

The following example creates a simple layout widget containing a button box and
a radio box widget. Note that WwLayout does not use callbacks, as it primarily cre-
ates a “container” that holds other widgets.

Enter the callback procedures into a file, and compile them with the .RUN
command. Then, enter the widget commands at the WAVE> prompt (or enter them
in a command file and run them with the @ command). To dismiss the layout box,
select the appropriate function (such as Close) from the window manager menu.

Callback Procedures

PRO RadioCB, wid, which

CASE which OF

1: PRINT,’First Toggle Selected’

2: PRINT,’Second Toggle Selected’

3: PRINT,’Third Toggle Selected’

ENDCASE

value = WwGetValue(wid)

PRINT, value

END

PRO ButtonCB, wid, data

CASE data OF

1: PRINT,’Quit Selected’

2: PRINT,’Dialog Selected’

3: PRINT,’Message Selected’

ENDCASE

END

Widget Commands

top=WwInit(’ww_ex27’, ’Examples’, layout,$

/Vertical, Spacing=30, Border=10)

blabels = [’Quit’,’Dialog’,’Message’]

bbox = WwButtonBox(layout, blabels,’ButtonCB’,$

/Horizontal, Spacing=20)

rlabels = [’System’,’Owner’,’Group’]

WwList Function 283

rbox = WwRadioBox(layout,rlabels, ’RadioCB’, $

/Vertical, Border=2, Spacing=20, $

Top=controls)

status = WwSetValue(top, /Display)

WwLoop

See Also

For more information about how to write an application program based on WAVE
Widgets, refer to Chapter 5, Using WAVE Widgets.

For additional information on the color and font keywords, see Setting Colors and
Fonts on page 201.

For additional information on attachment keywords, see Form Layout: Attachments
on page 170.

For information on Get and Set values, see Setting and Getting Widget Values on
page 206.

WwList Function
Creates a scrolling list widget.

Usage

list = WwList(parent, [items,] selectedCallback, defaultCallback)

Input Parameters

parent — The widget ID of the parent widget.

items — (optional) A string array containing the items to appear on the list. If the
items parameter is undefined or is defined as an array of null strings, the function
looks for item strings in a resource specification (see Discussion).

selectedCallback — A string containing the name of the callback that is executed
when an item is selected.

defaultCallback — A string containing the name of the callback that is executed
when a user double-clicks on an item.

284 Application Developer’s Guide

Returned Value

list — The widget ID of the list widget.

Keywords

Browse — If specified and nonzero, the list uses the “browse” selection method.
This method allows the user to select at most one item at a time. Whenever the user
selects an item, the currently selected item is deselected. When the user presses the
mouse selection button and drags the pointer over the list, the current selection
moves along with the pointer.

Extended — If specified and nonzero, the list uses the “extended” selection
method. This method allows the user to select multiple items at a time. Whenever
the user selects an item, the currently selected item is deselected; however, when
the user presses the mouse selection button and drags the pointer over the list, mul-
tiple items are selected. The selected items include all items between the item on
which the mouse selection button was pressed and the item currently under the
pointer.

HorzSb — If present and nonzero, a horizontal scroll bar appears if the list contents
are wider than the list.

Multi — If present and nonzero, the list widget uses multiple selection mode. The
default is single selection mode.

Name — A string specifying the name of the List widget or an array of strings
specifying the List widget name and the item names if the items parameter is not
defined. This is part of the resource specification. The Name keyword can be used
in place of the items parameter, although items will take precedence if both are
given. (Default: list.)

Position — If the scrolling list widget is to be placed in a bulletin board layout, use
this keyword to specify the x, y coordinates of the scrolling list widget within the
bulletin board.

Selected — Specifies the string, or string array, of items to be initially selected in
the list.

Visible — Specifies the number of items that are visible in the list widget.

Color/Font Keywords

Background — Specifies the background color name.

Font — Specifies the name of the font used for text.

WwList Function 285

Foreground — Specifies the foreground color name.

Attachment Keywords

Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the scrolling list widget is attached to the top of the specified widget. If no
widget ID is specified (for example, /Bottom), then the bottom of the scrolling
list widget is attached to the bottom of the parent widget.

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the scrolling list widget is attached to the right side of the specified widget. If no
widget ID is specified (for example, /Left), then the left side of the scrolling list
widget is attached to the left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the scrolling list widget is attached to the left side of the specified widget. If no
widget ID is specified (for example, /Right), then the right side of the scrolling
list widget is attached to the right side of the parent widget.

Top — If a widget ID is specified (for example, Top=wid), then the top of the
scrolling list widget is attached to the bottom of the specified widget. If no widget
ID is specified (for example, /Top), then the top of the scrolling list widget is
attached to the top of the parent widget.

Get/Set Value

getvalue — Returns an array of the selected items (string).

setvalue — Replaces current items with the new items (array of strings).

Callback Parameters

Any list widget callback procedure must have the following two parameters:

wid — List widget ID.

parent — Parent widget ID.

Discussion

A scrolling list allows users to select one or more items from a group of choices.
Items are selected from the list with the mouse. An additional callback can be
defined for the default action. This callback is executed when the user double-
clicks on an item.

286 Application Developer’s Guide

Part of the list item resource can be specified using the Name keyword, otherwise
the default is the *.item_#.itemString resource (where itemString is
the attribute).

TIP The items parameter provides a method for “hard-coding” the list items in the
application. For greater flexibility, create your resource file using a text editor, and
load the resource containing the list of items using WtResource. The Name key-
word can then be used in the WwList calling sequence to specify the List widget
name and items in the resource specification.

Example 1

This example creates a scrolling list containing the items defined in the string array
items. When the user selects an item (clicks it with the mouse), the first callback
ListCB is executed. If the user double-clicks on an item, the callback
DefaultCB is executed.

Enter the callback procedures into a file, and compile them with the .RUN
command. Then, enter the widget commands at the WAVE> prompt. To dismiss the
list box, select the appropriate function (such as Close) from the window manager
menu.

Callback Procedures

PRO ListCB, wid, data

PRINT,’Item Selected’

value = WwGetValue(wid)

PRINT, value

END

PRO DefaultCB, wid, data

PRINT,’Default Item Selected’

value = WwGetValue(wid)

PRINT, value

END

Widget Commands

top = WwInit(’ww_ex28’, ’Examples’, layout)

items = [’Presidents Day’,’St.Patricks Day’, $
’Easter’, ’Memorial Day’, ’4th of July’, $
’Labor Day’, ’Halloween’, ’Thanksgiving’, $
’Hanukkah’, ’Christmas’, ’New Years Eve’]

WwListUtils Function 287

datelist = WwList(layout, items, ’ListCB’, $
’DefaultCB’, Visible=7, /Multi)

status = WwSetValue(top, /Display)

WwLoop

Example 2

A typical resource specification for the list items used in WwList is:

Name = [’mylist’, ’spring’, ’summer’]

myapp.mylist.summer.itemString: Summer

See Also

WwListUtils

For more information about how to write an application program based on WAVE
Widgets, refer to Chapter 5, Using WAVE Widgets.

For additional information on the color and font keywords, see Setting Colors and
Fonts on page 201.

For additional information on attachment keywords, see Form Layout: Attachments
on page 170.

For information on Get and Set values, see Setting and Getting Widget Values on
page 206.

WwListUtils Function
Manages the contents of a list widget.

Usage

status = WwListUtils(wid [, param1[, param2]])

Input Parameters

wid — The widget ID of a scrolling list created with WwList.

param1 — (optional) This parameter depends on keyword use in the function call-
ing sequence. See Keywords for more information.

288 Application Developer’s Guide

param2 — (optional) This parameter depends on keyword use in the function call-
ing sequence. See Keywords for more information.

Returned Value

status — A value indicating the success or failure of the WwListUtils call.

Keywords

Add — Add the items specified by param1 to the list following the list position
specified by param2. If this keyword is used, you must also specify both of the fol-
lowing parameters.

param1 — A string or array of strings containing the items to add to the
list.

param2 — (long) Specifies the position in the list below which the items
are added. (Default: end of the list)

Delete — Delete the specified items from the list. If the All modifier keyword is
also specified, all items in the list are deleted. If All is not specified with Delete,
you must specify the following parameter:

param1 — A string or array of strings containing the items to delete from
the list.

Deselect — Deselect the specified items from the list. If the All modifier keyword
is also specified, all items in the list are deselected. If All is not specified with Dese-
lect, you must specify the following parameter:

param1 — A string or array of strings containing the items to deselect in
the list.

GetItems — If nonzero, returns an array of strings in an output parameter param1
containing all the items in the list. If the modifier keyword Count is specified, the
number of items is returned rather than the items themselves. If the Count keyword
is used, you must specify the following output parameter:

param1 — An array of strings, or a long integer (optional) representing the
number of items in the list is returned.

1 Indicates success.

0 Indicates failure.

WwListUtils Function 289

GetSelected — If nonzero, returns an array of strings in an output parameter
param1 containing the selected items. If the modifier keyword Count is specified,
the number of selected items is returned rather than the items themselves. If the
Count keyword is used, you must specify the following parameter:

param1 — An array of strings, or a long integer (optional) representing the
number of selected items in the list is returned.

Replace — Replace the specified items in the list, starting at a specified list posi-
tion. If this keyword is used, you must specify both of the following parameters.

param1 — A string or array of strings containing the items to replace.

param2 — (long) The position in the list to begin replacing items.

Select — Select the specified items in the list. If the All modifier keyword is also
specified, all items in the list are selected. If All is not specified with Select, you
must specify the following parameter:

param1 — A string or array of strings containing the items to select in the
list.

If the modifier keyword Notify is used with Select, the selectedCallback registered
with the WwList routine is called.

Modifier Keywords

NOTE The following modifier keywords are only used in conjunction with the
WwListUtils keywords listed.

All — If nonzero, all items in the list are selected, deselected, or deleted.

Count — If nonzero and the GetSelected or GetItems keywords are specified, the
number of items in the list widget is returned.

Notify — If nonzero and the Select keyword is specified, calls a PV-WAVE call-
back routine for the selected items.

Discussion

WwListUtils facilitates portability of PV-WAVE applications between Microsoft
Windows and X Windows environments. The WwListUtils function is a wrapper
for the WtList function.

290 Application Developer’s Guide

See Also

WtList, WwList

WwLoop Procedure
Handles the dispatching of events and calling of callbacks.

Usage

WwLoop

Parameters

None.

Returned Value

None.

Keywords

Noblock — If specified and nonzero, events are dispatched in the background, and
WwLoop returns immediately to process PV-WAVE commands from the command
line.

Discussion

WwLoop causes PV-WAVE to loop indefinitely, processing the events and dis-
patching callbacks. WwLoop is always the last WAVE Widgets command in a
WAVE Widgets procedure.

NOTE For interapplication development using cwavec() or cwavefor(), the
default behavior of WwLoop is to block, even if the Noblock keyword is set. To
force nonblocking, set Noblock = 2 and then call WtProcessEvent periodically
to service the event loop.

WwMainWindow Function 291

Example

For examples showing the use of WwLoop, see any of the WAVE Widgets widget-
creation routines, such as WwButtonBox, WwCommand, WwControlsBox,
WwList, and so on.

See Also

WtProcessEvent

For more information about how to write an application program based on WAVE
Widgets, refer to Chapter 5, Using WAVE Widgets.

WwMainWindow Function
Creates a top-level window and a layout widget.

Usage

shell = WwMainWindow(parent, workarea, [destroyCallback])

Input Parameters

parent — The widget ID of the parent widget.

destroyCallback — A string containing the name of the callback that is executed
when the main window is destroyed.

Output Parameters

workarea — The widget ID of the layout widget that is created inside of the top-
level shell.

Returned Value

shell — The widget ID of the top-level shell.

Keywords

Board — If present and nonzero, a bulletin board layout is created inside the main
window shell. See WwLayout for more information.

292 Application Developer’s Guide

Border — Specifies the width in pixels of the borders for the layout widget and its
child widgets. Default is 0.

ConfirmClose — A string containing the name of the procedure called when the
user selects the Close or Quit menu button from the window manager menu.

Form — If present and nonzero, a form layout is created inside the shell. See
WwLayout for more information.

Horizontal — If present and nonzero, aligns child widgets horizontally within the
layout widget (the default). Used with row/column layouts only. For more informa-
tion on layout widgets, see the WwLayout function.

Layout_name — Specifies the name of the layout widget which is part of the
resource specification. The default depends on other keywords specified in the
WwMainWindow usage.

If either Board or Form are specified, the Layout_name default is layout.

If either Horizontal or Vertical are specified, the default for Layout_name
is workarea.

Position — Specifies the x, y position of the upper-left corner of the main window
on the screen.

Shell_name — Specifies the name of the top-level layout widget, or TopLevelShell
which is part of the resource specification. (Default: shell.)

Spacing — Specifies the amount of space in pixels between child widgets inside
the layout. Used with row/column layouts only. Default is 0. For more information
on layout widgets, see the WwLayout function.

Title — A string specifying a title for the shell.

UserData — A variable. If the ConfirmClose keyword is specified, the value of this
variable is passed to the Close or Quit callback procedure.

Vertical — If present and nonzero, aligns child widgets vertically within the layout
widget. Used with row/column layouts only. For more information on layout wid-
gets, see the WwLayout function.

Color/Font Keywords

Background — Specifies the background color name.

Font — Specifies the name of the font used for text.

Foreground — Specifies the foreground color name.

WwMainWindow Function 293

Get/Set Value

Not supported.

Callback Parameters

Any main window callback procedure must have the following two parameters:

shell — Main window shell widget ID.

layout — Layout widget ID.

Discussion

The WwInit function creates one main window, and for many applications, this is
sufficient. WwMainWindow gives you the ability to create additional main win-
dows and layout widgets.

By default, the WwMainWindow creates a row/column layout widget. For more
information on layout widgets, see WwLayout.

The ConfirmClose keyword lets you control what happens when the user selects
Close or Quit from the window manager menu. Normally, the window from which
the menu item was selected is destroyed; however, you might want to display a con-
firmation dialog box or take another action instead of simply allowing the window
to be destroyed. The callback procedure specified by ConfirmClose destroys the
window when appropriate.

The ConfirmClose procedure you specify accepts two parameters: wid and
user_data, where:

wid = The widget ID of the top-level shell of the application.

user_data = The variable specified via the User_Data keyword. If
User_Data is not specified, 0 (zero) is passed to the ConfirmClose routine.

If specified, your ConfirmClose routine must close the top-level shell of the appli-
cation. An example of a simple ConfirmClose routine which just closes the shell is:

PRO MyConfirmClose, wid, user_data

s = WwSetValue(wid, /Close)

END

If ConfirmClose is not specified, then the shell is simply closed.

294 Application Developer’s Guide

Example

This example shows a call to the WwMainWindow function. No callback is
specified.

shell = WwMainWindow(parent,form, destroyCB, $

/Vertical, Title = ’Topics’)

See Also

For more information about how to write an application program based on WAVE
Widgets, refer to Chapter 5, Using WAVE Widgets.

For additional information on the color and font keywords, see Setting Colors and
Fonts on page 201.

WwMenuBar Function
Creates a menu bar.

NOTE WwMenuBar can only occur once per layout widget on Windows.

Usage

menubar = WwMenuBar(parent, items)

Input Parameters

parent — The widget ID of the parent widget.

items — An unnamed structure containing the menu bar items. For more informa-
tion, see Creating and Handling Menus on page 173.

Returned Value

menubar — The widget ID of the menu bar widget.

Keywords

HelpJustify — If nonzero, positions the last menu item (usually the Help menu) at
the far right of the menu bar.

WwMenuBar Function 295

Layout_name — Specifies the name of the RowColumn widget which is part of
the resource specification. (Default: menubar.)

Menus — Returns an array of menu pane widget IDs in the order in which the
menus were created. A menu pane is a special menu widget that serves as a con-
tainer for a menu item. Menu pane widget IDs can be used in the WwMenuItem
function to add, modify, or delete menu items.

Position — (UNIX/OpenVMS only) If the menu bar widget is to be placed in a bul-
letin board layout, use this keyword to specify the x, y coordinates of the menu bar
widget within the bulletin board.

Spacing — Specifies the amount of space in pixels between child widgets.

Color/Font Keywords

Background — Specifies the background color name.

Font — Specifies the name of the font used for text.

Foreground — Specifies the foreground color name.

Attachment Keywords

Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the menu bar widget is attached to the top of the specified widget. If no
widget ID is specified (for example, /Bottom), then the bottom of the menu bar
widget is attached to the bottom of the parent widget.

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the menu bar widget is attached to the right side of the specified widget. If no wid-
get ID is specified (for example, /Left), then the left side of the menu bar widget
is attached to the left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the menu bar widget is attached to the left side of the specified widget. If no wid-
get ID is specified (for example, /Right), then the right side of the menu bar
widget is attached to the right side of the parent widget.

Top — If a widget ID is specified (for example, Top=wid), then the top of the
menu bar widget is attached to the bottom of the specified widget. If no widget ID
is specified (for example, /Top), then the top of the menu bar widget is attached
to the top of the parent widget.

296 Application Developer’s Guide

Get/Set Value

getvalue — Gets the button label or icon pixmap ID for the selected menu button.
Or, if the button is a toggle, determines if the button is selected or unselected
(selected = 1, unselected = 0).

setvalue — Sets the button label or icon pixmap ID for the selected menu button.
Or, if the button is a toggle, selects or unselects the toggle button (select = 1, unse-
lect = 0).

Callback Parameters

Any menu bar callback procedure must have the following two parameters:

wid — Widget ID of the selected menu item.

index — Index of the selected menu item (1 – n).

Example

First, this example creates a menu bar with three menus: Fonts, Size, and Icons.
The unnamed structure menus contains all of the information used to create the
menus.

Enter the callback procedure into a file, and compile the procedure with the .RUN
command. Then, enter the widget commands at the WAVE> prompt (or enter them
in a command file and run them with the @ command). To dismiss the menu bar,
select the appropriate function (such as Close) from the window manager menu.

Callback Procedure

PRO MenuCB, wid, index

PRINT, ’Menu Item’, index, ’selected.’

value = WwGetValue(wid)

PRINT, value

END

Widget Commands

top = WwInit(’ww_ex29’, ’Examples’, layout)

menus={,callback:’MenuCB’, $
menubutton:’Fonts’, $
menu:{,callback:’MenuCB’, $

menubutton:’Adobe’, $

menu:{,callback:’MenuCB’, $

WwMenuBar Function 297

 toggle:’Normal’, $
 toggle:’Bold’, $
 toggle:’Italic’}, $

button:’Helvetica’, $

button:’Courier’}, $

menubutton:’Size’, $

menu:{,callback:’MenuCB’, $
 button:’8’, $
 button:’10’, $
 button:’12’}, $

menubutton:’Icons’, $

menu:{,callback:’MenuCB’, title:’Help’, $

icon:getenv(’WAVE_DIR’)+ $
’/xres/wxbm_btn_help_search.’, $

icon:getenv(’WAVE_DIR’)+ $
’/xres/wxbm_btn_help_toc.’, $

icon:getenv(’WAVE_DIR’)+ $
’/xres/wxbm_btn_help_topics.’, $
separator:1, $

icon:getenv(’WAVE_DIR’)+ $
’/xres/wxbm_btn_help_quit.’}}

bar=WwMenuBar(layout, menus)

status=WwSetValue(top, /Display)

WwLoop

See Also

WwMenuItem, WwOptionMenu, WwPopupMenu

For more information about how to write an application program based on WAVE
Widgets, refer to Chapter 5, Using WAVE Widgets.

For additional information on the color and font keywords, see Setting Colors and
Fonts on page 201.

For additional information on attachment keywords, see Form Layout: Attachments
on page 170.

For information on Get and Set values, see Setting and Getting Widget Values on
page 206.

298 Application Developer’s Guide

WwMenuItem Function
Adds, modifies, or deletes specified menu items.

Usage

status = WwMenuItem(parent, item, value [, callback])

Input Keywords

parent — The menu pane widget ID acquired using the Menus keyword from the
WwMenuBar, WwOptionMenu, or WwPopupMenu functions. A menu pane is a
special menu widget that serves as a container for a menu item.

item — The index of the menu item; the index of the first menu item is one (1).
Used for an Update or Delete operation.

value — The value (string) of the menu item. Used for an Update or Add operation.

callback — The callback procedure that is executed when the menu item is
selected. Used for an Add operation.

Returned Value

status — Returns one (1) if the function is successful, or zero (0) if the function is
not successful.

Keywords

Add — Appends the specified item to the menu. The type of item is specified by
additional keywords (Button, Icon, Menu, or Toggle). The Name keyword can also
be used with Add to specify the resource specification for the particular type of
widget.

Button — A push button item is added. If Name is not specified, the default
resource specification is button__#.

Icon — A graphic (icon) button is added. If Name is not specified, the
default resource specification is icon__#.

Menu — A pull-right menu item is added. If Name is not specified, the
default resource specification is pane__#.

Toggle — A toggle (radio) button is added. If Name is not specified, the

WwMenuItem Function 299

default resource specification is toggle__#.

NOTE The default resource specification for each item type consists of the item
name followed by two _ (underscores) and an index number identifying the num-
ber of items in the menu.

Update — Modifies the value of the item specified by the index of item.

Delete — Deletes the item specified by index.

Name — A string specifying the name of the PushButton widget (if a string or icon
label is given), otherwise Name specifies the name of the ToggleButton widget.
The Name keyword is used as part of the resource specification that identifies items
specified using the Add keyword. The defaults for Name are listed for each of the
three different item types under the Add keyword description.

Discussion

WwMenuItem lets you dynamically update menus that have already been created.
All menu items are placed inside a parent menu pane, and the widget ID of the
appropriate menu pane can be acquired using the Menus keyword of the
WwMenuBar, WwPopupMenu, or WwOptionMenu functions.

To update (Update keyword) or remove (Delete keyword) a menu item, use the
appropriate menu item index; the index of the first menu item is one (1). To add a
menu item to the bottom of the menu use the Add keyword.

Example

The following fragment shows how a callback might be written that uses
WwMenuItem to modify the contents of a menu pane.

PRO ButtonCB, wid, index

 COMMON Menus, menupane, item_no, new_name

 CASE index OF

 1: BEGIN ; Add new item

 status = WwMenuItem(menupane, item_no, new_name, /Add)

END

 2: BEGIN: ; Update last selected item

 status = WwMenuItem(menupane, item_no, new_name, $
/Update)

END

 3: BEGIN ; Remove last selected item

300 Application Developer’s Guide

 status = WwMenuItem(menupane, item_no, /Delete)

END

 ENDCASE

END

See Also

For more information about how to write an application program based on WAVE
Widgets, refer to Chapter 5, Using WAVE Widgets.

WwMessage Function
Creates a blocking or nonblocking message box.

Usage

wid = WwMessage(parent, [label,] OKCallback, CancelCallback, HelpCallback)

Input Parameters

parent — The widget ID of the parent widget.

label — (optional) A string containing the message text of the Dialog widget. If the
label parameter is not defined or is a null string, the function looks for the message
label in a resource specification (see Discussion).

OKCallback — A string containing the name of the callback routine that is called
when the OK button is selected.

CancelCallback — A string containing the name of the callback routine that is exe-
cuted when the Cancel button is selected.

HelpCallback — A string containing the name of the callback that is executed
when the Help button is selected.

Returned Value

wid — The message box widget ID.

Keywords

Block — If present and nonzero, creates a blocking message box (the default).

WwMessage Function 301

Help — Use this keyword to specify a help topic when the HelpCallback parameter
is not specified. This keyword can specify a two-element or one-element string
array. If it is a two-element array, the first element is the name of a help topic and
the second is the filename of the help file containing the topic. A one-element array
specifies only the name of a help topic. In this case the default help file is used. For
information on the location of the default help file, refer to the HELP command (in
the PV-WAVE Reference). The specified help topic is displayed in the online help
viewer when the Help button is pressed.

Info — If present and nonzero, creates an information message box.

Name — A string specifying the name of the Dialog widget. The Name specified
is the top-level widget name used in the resource specification. The keyword Name
can be used in place of the label parameter, although label (if other than a null
string) will take precedence if both are given. (Default: message.)

Nonblock — If present and nonzero, creates a nonblocking message box. (This
keyword has no effect under Microsoft Windows.)

Question — If present and nonzero, creates a question message box.

Title — Specifies a string containing the message box title.

Warning — If present and nonzero, creates a warning message box.

Working — If present and nonzero, creates a working message box.

Color/Font Keywords

Background — Specifies the background color name.

Font — Specifies the name of the font used for message text.

Foreground — Specifies the foreground color name.

Get/Set Value

Not supported.

Callback Parameters

Any message box callback procedure must have the following two parameters:

wid — Message widget ID.

shell — Shell widget ID.

302 Application Developer’s Guide

Discussion

A message window is a popup window. This means that it cannot be the child of
the top-level shell or the layout widget. Usually, a message widget is activated by
a pushbutton or menu button, as in the example below.

Part of the message text resource specification can be specified using the Name
keyword, otherwise the default is the *message.messageString resource
(where messageString is the attribute).

TIP The label parameter provides a method for “hard-coding” the message text in
the application. For greater flexibility, create your resource file containing the mes-
sage text using a text editor, and load the resource using WtResource. The Name
keyword can then be used in the WwMessage calling sequence to specify the Dia-
log widget name in the resource specification.

Example 1

This example creates a button box with four buttons. If you are running under
Motif, each button activates one of the four types of message windows: informa-
tion, working, warning, or question. The callback MessageOK is executed when
the user clicks on the OK or Confirm button. The callback MessageCancel is
executed when the user clicks on the Cancel button.

Enter the callback procedures into a file, and compile them with the .RUN
command. Then, enter the widget commands at the WAVE> prompt. To dismiss the
widgets, select the appropriate function (such as Close) from the window manager
menu of the menu bar.

Callback Procedures

PRO MbuttonCB, wid, data

CASE data OF

1: message=WwMessage(wid, $
’This is a Test Message’,’MessageOK’, $
’MessageCancel’,Title=’Information’)

2: message=WwMessage(wid, $
’This is a Test Message’,’MessageOK’, $
’MessageCancel’, /Working, Title=’Working’)

3: message=WwMessage(wid, $
’This is a Test Message’,’MessageOK’, $
’MessageCancel’, /Warning, $
Title=’Warning’)

WwMessage Function 303

4: message=WwMessage(wid, $
’This is a Test Message’,’MessageOK’, $
’MessageCancel’, /Question, Title=’Question’)

ENDCASE

END

PRO MessageOK, wid, data

PRINT,’Message OK’

END

PRO MessageCancel, wid, data

PRINT,’Message Cancel’

END

Widget Commands

top = WwInit(’ww_ex30’, ’Examples’, layout)

button = WwButtonBox(layout, [’Information’, $
’Working’, ’Warning’, ’Question’], $
’MbuttonCB’)

status = WwSetValue(top, /Display)

WwLoop

Example 2

A typical resource specification for dialog text used in WwMessage is:

myapp.message.messageString: This is my message.

See Also

For more information about how to write an application program based on WAVE
Widgets, refer to Chapter 5, Using WAVE Widgets.

For additional information on the color and font keywords, see Setting Colors and
Fonts on page 201.

304 Application Developer’s Guide

WwMultiClickHandler Function
Adds or removes a multi-click event handler.

Usage

status = WwMultiClickHandler(wid, handler [, userdata])

Input Parameters

wid — The widget ID of the widget to which the multi-click handler is added or
from which it is removed.

handler — The name of the multi-click handler procedure.

userdata — (optional) Stores the value of the specified variable.

Returned Value

status — A value indicating the success or failure of the addition or removal of the
multi-click event handler.

Keywords

Add — Add the specified multi-click handler for the ButtonPress event.

Clicks — The number of clicks required before the event handler is called.
(Default: 2)

Remove — Remove the specified multi-click handler from the widget.

TimeInterval — The maximum time interval, in milliseconds, between multiple
clicks that determines whether consecutive clicks are interpreted as multiple clicks.

Event Handler Parameters

The following parameters are required for the multi-click event handler procedure:

wid — The ID of the widget from which the multi-click event handler is called.

1 Indicates success.

0 Indicates failure.

WwMultiClickHandler Function 305

userdata — User-defined data.

event — An opaque event handle used in subsequent calls to request event data.

Discussion

WwMultiClickHandler allows an application to handle multiple mouse clicks
(two, three, or more) when they are received in the given time interval.

WwMultiClickHandler is a special type of event handler that only handles mouse-
button clicks. The mask ButtonPressMask is set internally and does not have to be
set by the user as in the case of a generic event handler such as WwHandler.

Example

This example creates a drawing area and displays an image. The event handler
DrawMClickHandler is activated when a mouse click occurs in the drawing area.
The callback DrawCB displays an image in the drawing area.

Enter the event handler and callback procedures into a file, and compile it with the
.RUN command. Then, enter the widget commands at the WAVE> prompt.

To dismiss the drawing area, select the appropriate function (such as Close) from
the window manager menu.

Event Handler and Callback Procedures
PRO DrawMClickHandler, wid, shell, event

; This event handler takes action when a button is pressed while the pointer is
; in the drawing area.
COMMON draw, top, img

PRINT, WwGetPosition(event)

; Print the position of the button press.
PRINT, WwGetButton(event,State = state)

; Print the button.
PRINT, ’State:’, state

; Print the state of the modifier keys.
status = WwMultiClickHandler(wid, ’DrawHandler’, /Remove)

; Remove the handler.

END

PRO DrawCB, wid, data

; This callback displays the image.
COMMON draw, top, img

306 Application Developer’s Guide

TV, img

END

Widget Commands
COMMON draw, top, img

top=WwInit(’ww_ex200’, ’Examples’, layout)

LOADCT, 5, /Silent

img=BYTARR(512,512)

OPENR,1, !Data_Dir + ’head.img’

READU,1,img

CLOSE, 1

draw=WwDrawing(layout, 1,’DrawCB’, $
[256,256], [512,512], Area = darea)

status = WwMultiClickHandler(darea, ’DrawMClickHandler’, top)

; Register the multi-click (double-click in this case) handler.

status=WwSetValue(top, /Display)

WwLoop

See Also

WtAddHandler, WwHandler

WwOptionMenu Function
Creates an option menu.

Usage

option = WwOptionMenu(parent, label, items)

Input Parameters

parent — The widget ID of the parent widget.

label — A string containing the text of the option menu label. If this parameter is
a null string, the Name keyword is used instead.

WwOptionMenu Function 307

items — An unnamed structure specifying the option menu items. For more infor-
mation, see Creating and Handling Menus on page 173.

Returned Value

option — The widget ID of the option menu box.

 Input Keywords

Name — A two-element string array. The first element, name(0), contains the
name of a pulldown widget; the second element, name(1), contains the name of the
option menu.

The Name keyword can be used in place of the label parameter, although label (if
other than a null string) will take precedence if both are given.

Position — If the option menu widget is to be placed in a bulletin board layout, use
this keyword to specify the x, y coordinates of the option menu widget within the
bulletin board.

Output Keywords

Menus — Returns an array of menu pane widget IDs in the order in which the
menus were created. A menu pane is a special menu widget that serves as a con-
tainer for a menu item. Menu pane widget IDs can be used in the WwMenuItem
function to add, modify, or delete menu items.

Color/Font Keywords

Background — Specifies the background color name.

Font — Specifies the name of the font used for the button text.

Foreground — Specifies the foreground color name.

Attachment Keywords

Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the option menu widget is attached to the top of the specified widget. If no
widget ID is specified (for example, /Bottom), then the bottom of the option
menu widget is attached to the bottom of the parent widget.

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the option menu widget is attached to the right side of the specified widget. If no

308 Application Developer’s Guide

widget ID is specified (for example, /Left), then the left side of the option menu
widget is attached to the left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the option menu widget is attached to the left side of the specified widget. If no
widget ID is specified (for example, /Right), then the right side of the option
menu widget is attached to the right side of the parent widget.

Top — If a widget ID is specified (for example, Top=wid), then the top of the
option menu widget is attached to the bottom of the specified widget. If no widget
ID is specified (for example, /Top), then the top of the option menu widget is
attached to the top of the parent widget.

Get/Set Value

getvalue — The button label or icon pixmap ID for the selected menu button. Or,
if the button is a toggle, returns whether it is selected or unselected (selected = 1,
unselected = 0).

setvalue — The button label or icon pixmap ID for the selected menu button. Or,
if the button is a toggle, selects or unselects the toggle button (select = 1,
unselect = 0).

Callback Parameters

Any option menu callback procedure must have the following two parameters:

wid — Widget ID of the selected menu item.

index — Index of the selected menu item (1 – n).

Discussion
An option menu is a button that, when selected, displays a menu. The current selec-
tion is always displayed on the option menu button. When the user makes a
selection, the option menu button is updated to reflect the change.

Pullright menus are not allowed in an option menu.

Example 1
This example creates an option menu. The menu information is defined in an
unnamed structure called fonts. The callback routine, MenuCB, is called when-
ever a menu item is selected.

WwOptionMenu Function 309

Enter the callback procedure into a file, and compile the procedure with the .RUN
command. Then, enter the widget commands at the WAVE> prompt. To dismiss the
option menu, select the appropriate function (such as Close) from the window
manager menu.

Callback Procedure

PRO MenuCB, wid, index

PRINT, ’Menu Item’, index, ’selected.’

value = WwGetValue(wid)

PRINT, value

END

Widget Commands

top = WwInit(’ww_ex31’, ’Examples’, layout)

fonts = {,callback:’MenuCB’, $
 button:’Adobe’,$
 button:’Helvetica’,$
 button:’Courier’}

opmenu = WwOptionMenu(layout, ’Fonts:’, $
 fonts, Position=[0,150])

status = WwSetValue(top, /Display)

WwLoop

Example 2

A typical resource specification for a menu label used in WwOptionMenu is:

myapp.layout.option_menu.labelString: Style:

See Also

WwMenuItem, WwMenuBar, WwPopupMenu

For more information about how to write an application program based on WAVE
Widgets, refer to Chapter 5, Using WAVE Widgets.

For additional information on the color and font keywords, see Setting Colors and
Fonts on page 201.

For additional information on attachment keywords, see Form Layout: Attachments
on page 170.

310 Application Developer’s Guide

For information on Get and Set values, see Setting and Getting Widget Values on
page 206.

WwPickFile Function
A convenience routine to easily create a modal file selection dialog that blocks until
a file name has been selected. This routine will not return until a file name is
selected or the Cancel button is pressed.

Usage

filename = WwPickFile(parent [, HelpCallback])

Input Parameters

parent — The widget ID of the parent.

HelpCallback — (Optional) A string containing the name of the callback routine
that is called when the Help button is selected. The Help keyword can be used
instead of the parameter.

Returned Value

filename — A string containing the name of the file selected. If the Cancel button
was selected a null string (‘’) is returned.

Keywords

Dir — Specifies a string containing the directory path.

File — Specifies a string containing the default file selection.

Help — Use this keyword to specify a help topic when the HelpCallback parameter
is not specified. This keyword can specify a two-element or one-element string
array. If it is a two-element array, the first element is the name of a help topic and
the second is the filename of the help file containing the topic. A one-element array
specifies only the name of a help topic. In this case the default help file is used. For
information on the location of the default help file, refer to the HELP command.
The specified help topic is displayed in the online help viewer when the Help but-
ton is pressed.

WwPickFile Function 311

Name — A string containing the name of the file selection box widget. The Name
specified is the widget name used as part of the resource specification. (Default:
file.)

Pattern — Specifies the search pattern used in combination with the directory in
determining files to be displayed.

Position — Specifies the position of the upper-left corner of the file selection win-
dow on the screen in pixels.

Shell_name — Specifies the name of the TopLevelShell container widget used to
hold the file selection box widget. The Shell_name specified is the top-level widget
shell name used as part of the resource specification. (Default: fileshell.)

Title — Specifies a string containing the file selection widget’s title.

Background — Specifies the background color name.

Font — Specifies the name of the font used for text.

Foreground — Specifies the foreground color name.

Discussion

The Block and NonBlock keywords found in the WwFileSelection widget are not
available. Because of the method that is used to process widget events and return
the filename, multiple instances of this dialog cannot exist. For this reason, the dia-
log always blocks.

Example
PRO ButtonCB, wid, data

 file = WwPickFile(wid)

 PRINT, file

END

PRO PickTest

 top = WwInit(’PickTest’, ’PickTest’, layout)

 button = WwButtonBox(layout, ’File Tool’, ’ButtonCB’)

 status = WwSetValue(top, /Display)

 WwLoop

END

312 Application Developer’s Guide

See Also

WwFileSelection

WwPopupMenu Function
Creates a popup menu.

Usage

popup = WwPopupMenu(parent, items)

Input Parameters

parent — The widget ID of the parent widget.

items — An unnamed structure specifying the menu bar items. For more details,
see Creating and Handling Menus on page 173.

Returned Value

popup — The widget ID of the popup menu widget.

Keywords

Menus — Returns an array of menu pane widget IDs in the order in which the
menus were created. A menu pane is a special menu widget that serves as a con-
tainer for a menu item. Menu pane widget IDs can be used in the WwMenuItem
function to add, modify, or delete menu items.

Name — A string specifying the name of the PopupMenu widget. The Name spec-
ified is part of the resource specification. (Default: menu.)

Color/Font Keywords

Background — Specifies the background color name.

Font — Specifies the name of the font used for text.

Foreground — Specifies the foreground color name.

WwPopupMenu Function 313

Get/Set Value

getvalue — The button label or icon pixmap ID for the selected menu button. Or,
if the button is a toggle, returns whether it is selected or unselected
(selected = 1, unselected = 0).

setvalue — The button label or icon pixmap ID for the selected menu button. Or,
if the button is a toggle, selects or unselects the toggle button (select = 1,
unselect = 0).

Callback Parameters

Any popup menu callback procedure must have the following two parameters:

wid — Widget ID of the selected menu item.

index — Index of the selected menu item (1 – n).

Discussion

A popup menu is a menu that appears when the user presses a mouse button (usu-
ally the right button) when the pointer is in the popup menu’s parent widget. Thus,
the popup menu is not tied to any menu button or menu bar.

NOTE Avoid creating popup menus that have a multi-line text widget as a parent.
The system editing menu may appear over the popup menu that you have defined.

Example

This example creates a drawing widget that serves as the parent for a popup menu.
The popup menu is activated when the right mouse button is pressed while the
pointer is over the drawing widget. The callback procedure is executed when a
menu button is selected.

Enter the callback procedures into a file, and compile the procedures with the .RUN
command. Then, enter the widget commands at the WAVE> prompt (or enter them
in a command file and run them with the @ command). To dismiss the button box,
select the appropriate function (such as Close) from the window manager menu.

Callback Procedures

PRO DrawCB, wid, data

COMMON draw, img

PRINT, ’Draw’

314 Application Developer’s Guide

TV, img

END

PRO MenuCB, wid, index

 PRINT, ’Menu Item’, index, ’selected.’

 VALUE = WwGetValue(wid)

 PRINT, value

END

Widget Commands

top = WwInit(’ww_ex32’, ’Examples’, layout)

COMMON draw, img

LOADCT, 5, /SILENT

img = BYTARR(512,512)

OPENR,1, !Data_Dir + ’head.img’

READU,1,img

CLOSE, 1

draw = WwDrawing(layout, 1,’DrawCB’, $
[256,256], [512,512])

status = WwSetValue(top, /Display)

menus = {,callback:’MenuCB’, $

menubutton:’Fonts’, $

menu:{,callback:’MenuCB’, $

menubutton:’Adobe’, $

menu:{,callback:’MenuCB’, $
toggle:’Normal’, $
toggle:’Bold’, $
toggle:’Italic’}, $

button:’Helvetica’, $

button:’Courier’}, $

menubutton:’Size’, $

menu:{,callback:’MenuCB’, $
button:’8’, $
button:’10’, $
button:’12’}}

menu = WwPopupMenu(draw, menus)

status = WwSetValue(top, /Display)

WwLoop

WwPreview Procedure 315

See Also

WwMenuItem, WwMenuBar, WwOptionMenu

For more information about how to write an application program based on WAVE
Widgets, refer to Chapter 5, Using WAVE Widgets.

For additional information on the color and font keywords, see Setting Colors and
Fonts on page 201.

For information on Get and Set values, see Setting and Getting Widget Values on
page 206.

WwPreview Procedure
Creates an ASCII data preview widget.

Usage

WwPreview, parent, confirmCallback, clearCallback

Input Parameters

parent — The widget ID of the parent widget.

confirmCallback — A procedure called when an area selection is confirmed.

clearCallback — A procedure called when an area selection is cleared.

Keywords

AutoDefine — If nonzero, the header, record, and field areas are automatically
defined after the file is loaded.

Filename — A string containing the name of the file from which column-oriented
ASCII data is read.

Format — A string specifying the format used to process the data when the Auto-
Define keyword is set. Format choices are: ’FIXED’ or ’FREE’. (Default:
’FIXED’)

Name — A string containing the name of the preview widget. (Default: preview)

Nlines — Specifies the number of lines to read from the data file.

316 Application Developer’s Guide

Position — If set, specifies a two-element vector containing the x, y coordinates for
the widget within a bulletin board layout.

Selection — A string specifying the type of area to select initially in the preview
window. The cursor changes to an H, R, or F to reflect the type of area to be selected:
Header, Record, or Field. The choices for this keyword are: ’ANY’, ’HEADER’,
’RECORD’, or ’FIELD’.

Visible — A two-element vector specifying the number of rows and columns dis-
played. If the data file size is bigger than the number of visible rows and columns
in the preview window, scrollbars are placed at the right and bottom edges of the
window. (Default: [5, 5])

Color/Font Keywords

Background — Specifies the background color name.

Font — Specifies the name of the font used for text. Only nonproportional (fixed-
width) fonts are supported.

Foreground — Specifies the foreground color name.

Attachment Keywords

Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the widget is attached to the top of the specified widget. If no widget ID is
specified (for example, /Bottom), then the bottom of the widget is attached to the
bottom of the parent widget.

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the widget is attached to the right side of the specified widget. If no widget ID is
specified (for example, /Left), then the left side of the widget is attached to the
left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the widget is attached to the left side of the specified widget. If no widget ID is
specified (for example, /Right), then the right side of the widget is attached to
the right side of the parent widget.

Top — If a widget ID is specified (for example, Top=wid), then the top of the wid-
get is attached to the bottom of the specified widget. If no widget ID is specified
(for example, /Top), then the top of the widget is attached to the top of the parent
widget.

WwPreview Procedure 317

Get/Set Value

getvalue — Gets the contents of the ASCII data file.

setvalue — Sets the contents of the ASCII data file.

Confirm Callback Parameters

An area selection is committed after it is confirmed by the user. Usually, confirma-
tion occurs when the user clicks MB3. When the user confirms an area selection, a
callback routine is called. This callback must have the following parameters:

wid — The preview widget ID.

object — A string containing the type of area to be committed. Valid areas
are: ’HEADER’, ’RECORD’, ’FIELD’.

status — Indicates whether WtPreview has already flagged an error. If sta-
tus is nonzero, an error detection has occurred. For example, if the area
selected by the user is invalid, status is nonzero.

area — A four-element vector specifying the exact lines and columns of
the preview window to commit. This vector specifies the following posi-
tions: the starting line, starting column, ending line, and ending column.

doit — An output parameter that gives the go-ahead to commit the selec-
tion. A value of 0 indicates that the selection should be refused; a nonzero
value means the selection is accepted.

Clear Callback Parameters

A routine that is called when an area selection is cleared must have the following
parameters:

wid — The preview widget ID.

object — The type of area— ’HEADER’, ’RECORD’, or ’FIELD’—to
be cleared.

area — A four-element vector specifying the exact lines and columns of
the preview window to clear. This vector specifies the following positions:
the starting line, starting column, ending line, and ending column.

318 Application Developer’s Guide

Discussion

WwPreview lets you create WAVE Widget tools that allow the user to look at the
structure of a column-oriented ASCII data file and interactively select specific
regions of the file. The three primary parts of a file that can be selected are the
header, records, and fields.

• Header — One or more lines at the beginning of the data file that are ignored
because they do not contain meaningful data.

• Record — The smallest portion of the file that contains a set of data (one value
from each field). A record can be defined to be exactly one line, less than one
line, or more than one line of the data file. A record must start in the first col-
umn of the data file and must be on the line immediately following the header.

• Field — A specific area in the file that contains a value and is contained in the
record.

The preview widget also allows these regions to be defined automatically when the
file is opened, via the AutoDefine keyword.

WwPreview provides the following mechanisms to select headers, records, and
fields:

• StartSelection — Marks the beginning of the specific area. By default, a selec-
tion is started when the user clicks MB1.

• EndSelection — Marks the end of the specific area. By default, a selection is
ended when the user clicks MB2.

• ConfirmSelection — Confirms the current selection. By default, a selection is
confirmed when the user clicks MB3.

Example
This example application uses the preview widget to create a tool to read a data file
and allow the user to select the header, record, and field regions of the data file. The
data file can be any column-oriented ASCII file. This example program automati-
cally loads the following data file into the preview window:

(UNIX) <wavedir>/data/air_qual.dat

(OpenVMS) <wavedir>:[DATA]AIR_QUAL.DAT

(Windows) <wavedir>\data\air_qual.dat

Where <wavedir> is the main PV-WAVE directory.

WwPreview Procedure 319

NOTE The application in this example uses the WAVE Widgets function WwPre-
viewUtils to provide some additional functionality not available with WwPreview,
such as clearing previously defined areas and setting characters used for filtering
and data separation.

The following illustration shows the preview window created in this example:

Figure 7-1 The preview window created in this example displays a data file and allows the
user to select header, record, and field regions using the mouse.

PRO ConfirmSelected, wid, object, status, area, doit

PRINT, ’object confirmed:’, object, ’status:’, status

PRINT, ’area:’, area

PRINT, ’doit:’, doit

END

PRO ClearSelected, wid, object, area

PRINT, ’object cleared:’, object

PRINT, ’area:’, area

END

field selection
is confirmed with
box

record selection
is confirmed with
underscore

header selection
is confirmed with
box

320 Application Developer’s Guide

PRO FileOK, wid, fsshell

COMMON PREVIEW_Widgets, top, shell, preview

filename = WwGetValue(wid)

OPENR, /GET_LUN, unit, filename

source = ’’

line = ’’

WHILE NOT eof(unit) DO BEGIN
READF, unit, line
source = source + line + ’\012’

ENDWHILE

FREE_LUN, unit

status = WwSetValue(preview, source)

status = WwSetValue(fsshell, /Close)

END

PRO FileDone, wid, fsshell

status = WwSetValue(fsshell, /Close)

END

PRO FileMenuCB, wid, index

@wtxmconsts

COMMON PREVIEW_Widgets, top, shell, preview

CASE index OF
1: BEGIN
file = WwFileSelection(wid, ’FileOK’, $
’FileDone’, $
TITLE = ’Search’, $
DIR = !Dir+’/data/’)
END
2: BEGIN
status = WwSetValue(top, /Close)
END

ENDCASE

END

PRO EditMenuCB, wid, index

COMMON PREVIEW_Widgets, top, shell, preview

@wtxmconsts

CASE index OF
1: BEGIN
status = WwPreviewUtils(preview, /Clear, $
/All)
END
2: BEGIN
status = WwPreviewUtils(preview, ’RECORD’, $

WwPreview Procedure 321

1, [0, 54, 3, 3], /Clear)
END
3: BEGIN
header = [0,53,0,2]
status = WwPreviewUtils(preview, ’HEADER’,1,$
header, /Commit)
record = [0,54,3,3]
status = WwPreviewUtils(preview, ’RECORD’, $
record, /Commit)
END

ENDCASE

END

PRO SeparatorsOK, wid, index

COMMON PREVIEW_Widgets, top, shell, preview

status = WtSet(preview, {, $
separatorChars:WwGetValue(wid)})

END

PRO FiltersOK, wid, index

COMMON PREVIEW_Widgets, top, shell, preview

status = WtSet(preview, {, filterChars:WwGetValue(wid)}

END

PRO OptionsMenuCB, wid, index

COMMON PREVIEW_Widgets, top, shell, preview

CASE index OF
2: BEGIN
separ = WtGet(preview, ’separatorChars’)
status = WwDialog(preview, ’Separators:’, $
’SeparatorsOK’, Text = separ)

END
3: BEGIN
filter = WtGet(preview, ’filterChars’)
status = WwDialog(preview, ’Filters:’,$
’FiltersOK’, Text = filter)
END

ENDCASE

END

PRO FormatMenuCB, wid, index

@wtxmconsts

COMMON PREVIEW_Widgets, top, shell, preview

CASE index OF
1: BEGIN
status = WtSet(preview, {, $
formatType:XmFORMAT_FIXED})

322 Application Developer’s Guide

END
2: BEGIN
status = WtSet(preview, {, $
formatType:XmFORMAT_FREE})
END

ENDCASE

END

PRO ButtonCB, wid, data

@wtxmconsts

COMMON PREVIEW_Widgets, top, shell, preview

CASE data OF
1: BEGIN
status = WwPreviewUtils(preview, /AutoDefine)
END
2: BEGIN
status = WtSet(preview, {, $
selectionMode:XmHEADER_PW_OBJECT})
END
3: BEGIN
status = WtSet(preview, {, $
selectionMode:XmRECORD_PW_OBJECT})
END
4: BEGIN
status = WtSet(preview, {, $
selectionMode:XmFIELD_PW_OBJECT})
END
5: BEGIN
status = WtSet(preview, {, $
selectionMode:XmANY_PW_OBJECT})
END

ENDCASE

END

PRO test_preview

@wtxmclasses
@wtxmconsts

COMMON PREVIEW_Widgets, top, shell, preview
top = WwInit(’preview’, ’Preview’, layout, $
Title = ’Preview’, Background = ’White’, $
Foreground = ’red’, $
/FORM, BORDER = 3, Position = [100, 100])
menus = {, menubutton:’File’, $
menu:{, callback:’FileMenuCB’, $
button:’Open’, $
button:’Quit’}, $
menubutton:’Edit’, $

WwPreview Procedure 323

menu:{, callback:’EditMenuCB’, $
button:’Clear All’, $
button:’Clear’, $
button:’Set areas’}, $
menubutton:’Options’, $
menu:{, callback:’OptionsMenuCB’, $
menubutton:’Format’, $
menu:{, callback:’FormatMenuCB’, $
button:’Fixed’, $
button:’Free’}, $
button:’Separators...’, $
button:’Filter...’} $
}
bar = WwMenuBar(layout, menus, /Left, $
/Right, /Top, $
Font = ’-adobe-times-bold-r-normal--14*’)

preview = WwPreview(layout, ’ConfirmSelected’, $
’ClearSelected’, $
/Auto, File = ’air_qual.dat’, $
Top = bar, /Left, /Right, $
Visible = [20, 60], Font = font, $
Foreground = ’Blue’, $
Background = ’LightGrey’)
labels = [’Auto Define’, ’Header’, ’Record’, $
’Fields’, ’Any’]
bbox = WwButtonBox(layout, labels, ’ButtonCB’, $
/Horizontal, SPACING = 5, $
Top = preview, /Left, /Right, /Bottom)
status = WwSetValue(top, /Display)

WwLoop

END

See Also

WtPreview, WwPreviewUtils

324 Application Developer’s Guide

WwPreviewUtils Function
Manages the contents of a preview widget.

Usage

status = WwPreviewUtils(wid [, param1, param2, param3])

Input Parameters

wid — The widget ID of the WwPreview widget.

param1 — (optional) This parameter depends on keyword use in the function call-
ing sequence. See Keywords for more information.

param2 — (optional) This parameter depends on keyword use in the function call-
ing sequence. See Keywords for more information.

param3 — (optional) This parameter depends on keyword use in the function call-
ing sequence. See Keywords for more information.

Returned Value

status — A value indicating success or failure of the function.

Keywords

AutoDefine — If nonzero, automatically defines the header, record, and field
regions of the ASCII data file.

Clear — If nonzero, clears all currently selected regions in the preview widget. If
the All modifier keyword is also specified, all regions of the ASCII data file are
cleared. If All is not specified, you must specify the following parameters:

param1 — An array of strings containing the types of areas to clear. These
types include: [’Header’, ’Record’, ’Field’].

param2 — The number of areas to clear.

param3 — The areas to clear.

1 Indicates success.

0 Indicates failure.

WwRadioBox Function 325

Commit — If nonzero, commits all currently selected regions in the preview wid-
get. If you use this keyword, you must specify the following parameters:

param1 — An array of strings containing the types of areas to commit.
These types include: [’Header’, ’Record’, ’Field’].

param2 — The number of areas to commit.

param3 — The areas to commit.

Format — If specified, selects the datatype format from the following formats;
’FIXED’, or ’FREE’. (Default: ’FIXED’)

Select — If nonzero, selects the specified regions. If this keyword is used, you must
specify the following parameters:

param1 — An array of strings containing the types of areas to select. These
types include: [’Header’, ’Record’, ’Field’].

param2 — The areas to be selected.

SelectionMode — If specified, sets the mode for the selection area to one of the
following: ’HEADER’, ’RECORD’, ’FIELD’, ’ANY’.

SeparatorChars — A string containing the characters to use as field separators. For
example, to use comma and semicolon as separators, the string would be ’,;’ .

Value — Sets the contents of the preview window to the specified string.

See Also

WwPreview

WwRadioBox Function
Creates a box containing radio buttons.

Usage

radio = WwRadioBox(parent, [labels,] callback)

Input Parameters

parent — The widget ID of the parent widget.

326 Application Developer’s Guide

labels — (optional) A string array of button labels. If the labels parameter is not
defined or is an array of null strings, the function looks for the button labels in a
resource specification (see Discussion).

callback — A string containing the name of the callback that is executed when a
radio button is selected or unselected.

NOTE The callback procedure is called twice if the Oneofmany keyword is spec-
ified. It is called once when the previously select button is unselected and again for
the newly selected button. Use WwGetValue to determine if a button is currently
selected or unselected.

Returned Value

radio — The widget ID of the radio box widget when more than one radio button
is used. If only one button is requested, the widget ID of the layout around that one
button is returned. To get the widget ID of that single button, use the Toggles output
keyword.

Keywords

AlignLeft — If nonzero, aligns the text to the right of the toggle to be left-justified.
This keyword is only useful if you have multiple toggle buttons that are vertically
oriented. By default, buttons are center-justified.

AlignRight — If nonzero, aligns the text to the right of the toggle to be right-justi-
fied. This keyword is only useful if you have multiple toggle buttons that are
vertically oriented. By default, buttons are center-justified.

Border — Specifies the width in pixels of the radio box and button borders.

Center — An array specifying the position of the left and right edge of buttons as
a percentage of radio box width. By default, buttons are spaced evenly in the box.

Form — When present and nonzero, buttons are placed in a form layout and all
specified attachment keywords are honored (i.e., /Left, /Right, /Top, /Bottom). By
default, buttons are placed in a row/column layout.

Horizontal — When present and nonzero, creates a horizontally aligned row of
radio buttons.

Layout_name — Specifies the name of the layout widget. This name is part of the
resource specification. Layout_name names the Form widget (if Form is specified),

WwRadioBox Function 327

the SimpleRadioBox widget (if Oneofmany is specified), or the SimpleCheckBox
widget (if Nofmany is specified). (Default: radio.)

Measure — Specifies the number of columns of radio buttons (for a vertical box)
or rows (for a horizontal box).

Name — A string array specifying the button widget names. The button widget
names specified are part of the resource specifications containing the button labels.
The Name keyword can be used in place of the labels parameter, although labels
(if other than an array of null strings) will take precedence if both are given.
(Default: button_1, button_2, ..., button_n.)

Nofmany — When present and nonzero, creates nonexclusive radio buttons, where
any number of buttons can be selected at once.

Oneofmany — When present and nonzero, creates exclusive radio buttons, where
only one button can be selected at a time.

Position — If the radio box widget is to be placed in a bulletin board layout, use
this keyword to specify the x, y coordinates of the radio box widget within the bul-
letin board.

Spacing — Specifies the space in pixels between radio buttons.

Toggles — Returns an array of toggle button widget IDs.

Vertical — When present and nonzero, creates a vertically aligned column of radio
buttons.

Color/Font Keywords

Background — Specifies the background color name.

Basecolor — Specifies the base color.

Font — Specifies the name of the font used for text.

Foreground — Specifies the foreground color name.

Attachment Keywords

Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the radio box widget is attached to the top of the specified widget. If no
widget ID is specified (for example, /Bottom), then the bottom of the radio box
widget is attached to the bottom of the parent widget.

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the radio box widget is attached to the right side of the specified widget. If no wid-

328 Application Developer’s Guide

get ID is specified (for example, /Left), then the left side of the radio box widget
is attached to the left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the radio box widget is attached to the left side of the specified widget. If no wid-
get ID is specified (for example, /Right), then the right side of the radio box
widget is attached to the right side of the parent widget.

Top — If a widget ID is specified (for example, Top=wid), then the top of the
radio box widget is attached to the bottom of the specified widget. If no widget ID
is specified (for example, /Top), then the top of the radio box widget is attached
to the top of the parent widget.

Get/Set Value

getvalue — Gets the state of the selected radio button. Set = 1; unset = 0.

setvalue — Sets the state of the selected radio button. Set = 1; unset = 0.

Callback Parameters

Any radio button callback procedure must have the following two parameters:

wid — Toggle button widget ID.

index — Index of the toggle button changed (1 – n).

Discussion

This function creates a box containing a specified number of rows or columns of
labeled toggle buttons. If only one button is created, a box is not created; instead,
only a single button widget is created.

Part of the button label resource specification can be specified using the Name key-
word, otherwise the default is the *button_n.labelString resource (where
labelString is the attribute).

TIP The labels parameter provides a method for “hard-coding” the button labels
in the application. For greater flexibility, create a resource file containing the button
labels using a text editor, and load the button label resources using WtResource.
The Name keyword can then be used in the WwRadioBox calling sequence to spec-
ify the resources.

WwRadioBox Function 329

Example 1

This example creates a box containing radio buttons. The callback is executed
whenever the user clicks on a button.

Enter the callback procedure into a file, and compile the procedure with the .RUN
command. Then, enter the widget commands at the WAVE> prompt. To dismiss the
radio button box, select the appropriate function (such as Close) from the window
manager menu.

Callback Procedure

PRO RadioCB, wid, which

CASE which OF
1: PRINT,’First Toggle Selected’
2: PRINT,’Second Toggle Selected’
3: PRINT,’Third Toggle Selected’

ENDCASE

value = WwGetValue(wid)

PRINT, value

END

Widget Commands

top = WwInit(’ww_ex33’, ’Examples’, layout)

labels = [’System’, ’Owner’, ’Group’]

rbox = WwRadioBox(layout, labels, ’RadioCB’, $
/Vertical, Border=2, Spacing=20)

status = WwSetValue(top, /Display)

WwLoop

Example 2

A typical resource specification for a button label used in WwRadioBox is:

myapp*radio.shade_g.labelString: Gouraud

See Also

For more information about how to write an application program based on WAVE
Widgets, refer to Chapter 5, Using WAVE Widgets.

For additional information on the color and font keywords, see Setting Colors and
Fonts on page 201.

330 Application Developer’s Guide

For additional information on attachment keywords, see Form Layout: Attachments
on page 170.

For information on Get and Set values, see Setting and Getting Widget Values on
page 206.

WwResource Function
Queries, creates, saves, or modifies the widget resource database.

Usage

value = WwResource([resvar])

Input Parameters

resvar — (optional) A string containing a resource variable specification in the
resource database.

Returned Value

value — The returned value depends on the input parameter and/or the use of key-
words as shown in the following table.

Keywords

Add — A string containing a name: value resource specification to merge into the
resource database in the current session. If the resource specification already exists
in the application, the Add keyword takes precedence.

Value Returned
Parameter or
Keyword Used

A string containing the value associated
with resvar; a null string, if resvar isn’t
found; or the default value specified.

resvar, or
resvar with Default
keyword

An integer value of 1 indicating success,
or 0 indicating failure.

Add, Load, or
Save keywords

A string containing the resource
specification a widget.

Spec keyword

WwResource Function 331

Default — (Used only if resvar is specified.) A string specifying a default value for
the resource variable in resvar. If resvar doesn’t match anything in the resource
database, the default value is returned.

Load — A string specifying the pathname of a resource file to be merged with the
existing resource database. If the resource file was specified in the application, the
use of the Load keyword takes precedence.

Save — A string specifying the pathname of the resource file in which to save the
currently defined resources in the resource database. If the specified file already
exists, the contents are overwritten.

Spec — Used to specify a widget ID. The resource variable specification of the
widget is returned.

Discussion

WwResource provides direct access to the widget resource database from WAVE
Widgets applications. Resources which are loaded or added using WwResource are
then automatically used by all subsequently created WAVE Widgets. The resource
specifications merged into the resource database using either the Load or Add key-
words supercede existing definitions.

Examples

The following example shows how a resource specification added during a session
takes precedence over the existing definition.

myapp*background: red

; The existing resource specification in the database.

value = WwResource(ADD=’myapp*background: blue’)

; The Add keyword changes the color to blue instead. For the rest of the
; session, or until it is redefined, the background color will be blue.

In the next example, the syntax for using the Load keyword is illustrated.

value = WwResource(LOAD=’/usr/mydir/myapp/myapp.ad’)

; This merges the resources found in the specified file with the
; existing resource database.

This example shows how to request a value associated with a resource name.

value = WwResource(’myapp*mybutton.label’, $
Default=’my label’)

; This usage returns the value associated with the resource variable
; specified. The Default keyword is used to return the value ‘my label’,
; if the named resource doesn’t exist.

332 Application Developer’s Guide

An example for writing all defined resources to a file is:

value = WwResource(SAVE=’/usr/mydir/myapp/myapp.newad’)

To request the resource variable specification of a particular widget identified by
its associated widget ID, use:

value = WwResource(SPEC=widget_id)

See Also

WtResource, WoLoadResources

WwSeparator Function
Creates a horizontal or vertical line that separates components in a graphical user
interface.

Usage

separator = WwSeparator(parent)

Input Parameters

parent — The parent widget’s ID.

Returned Value

separator — The separator widget’s ID.

Input Keywords

Double_Dashed_Line — If present and nonzero, creates a double dashed-line
separator.

Double_Line — If present and nonzero, creates a double-line separator.

Height — Specifies the height (in pixels) of vertical separators.

Horizontal — If present and nonzero, creates a horizontal separator. (Default)

Margin — An integer specifying the spacing on each end of the separator, in pix-
els. For a horizontal separator, the margin is added on the left and right. For a
vertical separator, the margin is added on the top and bottom.

WwSeparator Function 333

Name — A string specifying the name of the separator widget. This name is part
of the resource specification for the separator. (Default: separator)

No_Line — If present and nonzero, creates a separator with no line.

Position — If the separator is to be placed in a bulletin board layout, use this key-
word to specify the x, y coordinates of the separator within the bulletin board.

Single_Dashed_Line — If present and nonzero, creates a single dashed-line
separator.

Single_Line — If present and nonzero, creates a solid single-line separator.

Shadow_Etched_In — If present and nonzero, creates a separator that appears to
be etched inward. (Default)

Shadow_Etched_Out — If present and nonzero, creates a separator with a raised
appearance.

Vertical — If present and nonzero, creates a vertical separator. (Default:
horizontal)

Width — Specifies the width, in pixels, of a horizontal separator.

Color/Font Keywords

Background — Specifies the background color name.

Foreground — Specifies the foreground color name.

Attachment Keywords

Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the separator widget is attached to the top of the specified widget. If no
widget ID is specified (for example, /Bottom), then the bottom of the separator
widget is attached to the bottom of the parent widget.

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the separator widget is attached to the right side of the specified widget. If no wid-
get ID is specified (for example, /Left), then the left side of the separator widget
is attached to the left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the separator widget is attached to the left side of the specified widget. If no wid-
get ID is specified (for example, /Right), then the right side of the separator
widget is attached to the right side of the parent widget.

Top — If a widget ID is specified (for example, Top=wid), then the top of the sep-
arator widget is attached to the bottom of the specified widget. If no widget ID is

334 Application Developer’s Guide

specified (for example, /Top), then the top of the separator widget is attached to
the top of the parent widget.

Get/Set Value

None.

Callback Parameters

None.

Discussion

The separator widget resource name can be specified with the Name keyword, oth-
erwise the default resource name is separator.

Use the Width and Height keywords when placing separators in a bulletin board
layout (or, on Microsoft Windows platforms, a row/column layout). The Width key-
word has no effect on vertical separators, and Height has no effect on horizontal
separators. Microsoft Windows does not support the dashed line separators.

Example 1

This example generates all of the different types of separators that can be created
with WwSeparator.

top = WwInit(’sep_test’, ’,WidgetTest’, layout, /Vertical,
Spacing=15)

l = WwText(layout, Text=’Sample Separators’, /Label)

l = WwSeparator(layout, Width=100) ; Default separator--

; same as /Shadow_Etched_In

l = WwSeparator(layout, /Single_Line, Width=100)

l = WwSeparator(layout, /Single_Dashed_Line, Width=100)

l = WwSeparator(layout, /Double_Line, Width=100)

l = WwSeparator(layout, /Double_Dashed_Line, Width=100)

l = WwSeparator(layout, /Shadow_Etched_Out, Width=100)

status = WwSetValue(top, /Display)

WwSetCursor Function 335

WwLoop

END

Figure 7-2 The six types of separators that can be created with WwSeparator.

See Also

For detailed information on GUI development, refer to the PV-WAVE Application
Developer’s Guide.

WwSetCursor Function
Sets the cursor for a widget.

Usage

status = WwSetCursor(wid, cursor)

Input Parameters

wid — The widget ID.

cursor — The name of the cursor or the cursor index. For a list of cursors, see
Appendix C, Widget Toolbox Cursors.

Returned Value

status — A value indicating success or failure of the function.

1 Indicates success.

0 Indicates failure.

Default Separator (Shadow Etched In)
Single Line
Single Dashed Line
Double Line
Double Dashed Line
Shadow Etched Line

336 Application Developer’s Guide

Keywords

Default — If nonzero, sets the default cursor for the widget.

Wait — If nonzero, sets the wait cursor for the widget.

Example

For an example of WwSetCursor, see the example for the WwGetPosition function.

See Also

WtCursor

WwSetValue Function
Sets the specified value for a given widget.

Usage

status = WwSetValue(widget, [value])

Input Parameters

widget — The ID of the widget whose value you want to set.

value — The value of the widget (optional when keywords are specified).

Returned Value

status — Returns 1 if the function is successful, or 0 if the function is not
successful.

Keywords

Close — If present and nonzero, closes the widget hierarchy from the top-level
shell down.

Display — If present and nonzero, displays the widget hierarchy from the top-level
shell down.

Hide — If present and nonzero, hides the specified widget or group of widgets
(layout).

WwSetValue Function 337

Nonsensitive — If present and nonzero, sets the widget to nonsensitive.

Nopropagate — If nonzero, suppresses the propagation of the value of Userdata
for children of the container widgets (Form, Board, Row/Column).

Position — If the widget is to be placed in a bulletin board layout, use this keyword
to specify a 2-element array containing the x, y coordinates of the widget within the
bulletin board (in pixels).

Scroll — Specifies a 2-element array containing the scroll position (x,y coordi-
nates, in pixels) of a drawing area widget or a text widget. The widget must be
displayed before the call to WwSetValue with the Scroll keyword is made.

Show — If present and nonzero, shows the specified widget or group of widgets
(layout).

Sensitive — If present and nonzero, sets the widget to sensitive.

Size — A two-element array specifying the width and height of the specified
widget.

Update — If present and nonzero, all pending exposure (i.e., window repair) events
are processed immediately. If you suspect that a callback procedure will take a long
time, use this keyword to update the display before starting the time consuming
operation.

Userdata — Stores the specified variable with the widget. By default, the value of
Userdata is also set (propagated) for all children of the container widgets (Form,
Board, Row/Column). To suppress the propagation of the value of Userdata use the
Nopropagate keyword. You can retrieve the value of Userdata later with
WwGetValue.

Color/Font Keywords

Background — Specifies the background color name.

Font — Specifies the name of the font used for text.

Foreground — Specifies the foreground color name.

Attachment Keywords

Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the widget is attached to the top of the specified widget. If no widget ID is
specified (for example, /Bottom), then the bottom of the widget is attached to the
bottom of the parent widget.

338 Application Developer’s Guide

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the widget is attached to the right side of the specified widget. If no widget ID is
specified (for example, /Left), then the left side of the widget is attached to the
left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the widget is attached to the left side of the specified widget. If no widget ID is
specified (for example, /Right), then the right side of the widget is attached to
the right side of the parent widget.

Top — If a widget ID is specified (for example, Top=wid), then the top of the wid-
get is attached to the bottom of the specified widget. If no widget ID is specified
(for example, /Top), then the top of the widget is attached to the top of the parent
widget.

Discussion

See the Get/Set Value section under each WAVE Widget function description to
find out what value is set by WwSetValue for each function. For example,
WwSetValue called with the ID of a list widget sets the current list of items to a
specified string array of new items.

Example

The following example demonstrates two common uses of WwSetValue: display-
ing and closing widgets. In the callback routine CommandDone, WwSetValue is
called to close the widget when the user selects the Close function from the win-
dow manager menu. In the Widget Commands section, WwSetValue is used to
display the button box widget.

PRO CbuttonCB, wid, data

command = WwCommand(wid, ’CommandOK’, $
’CommandDone’, Position=[300,300], $
Title=’Command Entry Window’)

END

PRO CommandOK, wid, shell

value = WwGetValue(wid)

PRINT, value

END

PRO CommandDone, wid, shell

status = WwSetValue(shell, /Close)

END

WwTable Function 339

Widget Commands

top = WwInit(’ww_ex34’, ’Examples’, layout)

button = WwButtonBox(layout, ’Command’, ’CbuttonCB’)

status = WwSetValue(top, /Display)

WwLoop

See Also

For more information about how to write an application program based on WAVE
Widgets, refer to Chapter 5, Using WAVE Widgets.

For additional information on the color and font keywords, see Setting Colors and
Fonts on page 201.

For additional information on attachment keywords, see Form Layout: Attachments
on page 170.

WwTable Function
Creates an editable 2D array of cells containing string data, similar to a
spreadsheet.

Usage

table = WwTable(parent, callback [, variable])

Input Parameters

parent — The widget ID of the parent widget.

callback — A procedure that is called when the contents of a cell are modified.

NOTE It is the calling routine’s responsibility to modify the appropriate variables
when a table cell has been modified.

variable — (optional) A variable used to initialize the table cells. When this param-
eter is not supplied, the cells are initially empty, and the size of the table is set to
the size specified by the Cols and Rows keywords. You can use the following types
of variables with WwTable:

340 Application Developer’s Guide

• scalar

• vector

• 2D array

• structure with scalar fields or date/time structure field

All values are converted to type string within WwTable.

Returned Value

table — The widget ID of the table widget.

Keywords

Alignments — A one-dimensional array (0, ..., cols–1) of column alignments.
Valid values are:

Clabels — A one-dimensional string array (0, ..., cols–1) of column labels.

NOTE It is recommended that you specify row/column labels. Clicking MB2 on
a row label selects the whole row; clicking MB2 on a column label selects the
whole column.

Colors — A two-dimensional array (0, ..., rows–1, 0, ..., cols–1) of color indexes
for table cells. This enables you to highlight particular groups of cells.

Cols — The number of columns in the table. If the Cols keyword is not specified,
and the variable parameter is specified, the number of columns is calculated from
the dimensions of variable. If neither Cols nor variable are specified, the size of
the table is set to one column.

Cwidth — A one-dimensional array (0, ..., cols–1) of column widths. If not speci-
fied, the default column width is 10 characters.

Fixrows — The number of fixed rows in the table. Fixed rows are non-scrollable,
non-editable cells that can serve as labels.

0 Align cell contents to cell’s left edge (left justify).

1 Center cell contents (center justify).

2 Align cell contents to cell’s right edge (right justify).

WwTable Function 341

Fixcols — The number of fixed columns in the table. Fixed columns are non-scrol-
lable, non-editable cells that can serve as labels.

NOTE You can specify Fixrows or Fixcols for a table, but not both.

Horizontal — If this keyword is present and nonzero, the contents of variable are
displayed in natural fashion, i.e., variable rows are horizontal and columns are ver-
tical. Horizontal is enabled by default. The Horizontal and Vertical keywords are
mutually exclusive.

Name — A string specifying the name of the XbaeMatrix widget. The Name spec-
ified identifies the table widget name as part of the resource specification. Name
can be used to define the column and row attributes in place of the Clabels and Rla-
bels keywords, although those keywords will take precedence if specified in
addition to Name. (Default: table)

Position — If the widget is to be placed in a bulletin board layout, use this keyword
(a two-element vector) to specify the x, y coordinates of the widget within the bul-
letin board.

Rlabels — A one-dimensional string array (0, ..., rows–1) of row labels.

Rows — The number of rows in the table. If the Rows keyword is not specified, and
the variable parameter is specified, the number of rows is calculated from the
dimensions of variable. If neither Rows nor variable are specified, the size of the
table is set to one row.

Setcelldata — A copy of any PV-WAVE variable to be passed as client data to the
Setcells function.

Setcells — Allows you to name a PV-WAVE function that is responsible for setting
the values of the exposed cells. This function is called, like a callback, whenever
cells are exposed (for example, as the user scrolls through the table). The function
returns a string that is used to set the cell’s new value. The function’s input param-
eters are the table widget ID, a vector [row, column] specifying the exposed cell,
and client data specified with the Setcelldata keyword. If this function is specified,
the variable parameter is ignored.

Using Setcells can improve performance when a large table is created. Ordinarily,
when the table’s cells are populated by values taken from a single variable (the
variable parameter), WwTable actually copies this variable first. When Setcells is
used, only the values currently displayed are held in memory. See Example 2 on
page 345 for more information on Setcells.

342 Application Developer’s Guide

Vertical — If this keyword is present and nonzero, the contents of variable are dis-
played as transposed (variable rows are vertical and columns are horizontal). The
Horizontal and Vertical keywords are mutually exclusive.

Visible — A two-element vector specifying the number of rows and columns dis-
played. If the table size is bigger than the number of visible rows and columns,
scrollbars are placed at the right and bottom edges of the window, so that you can
view different portions of the table. If this keyword is not specified, four rows and
four columns are displayed.

Color/Font Keywords

Background — Specifies the background color name.

Font — Specifies the name of the font used for text.

Foreground — Specifies the foreground color name.

Attachment Keywords

Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the widget is attached to the top of the specified widget. If no widget ID is
specified (for example, /Bottom), then the bottom of the widget is attached to the
bottom of the parent widget.

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the widget is attached to the right side of the specified widget. If no widget ID is
specified (for example, /Left), then the left side of the widget is attached to the
left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the widget is attached to the left side of the specified widget. If no widget ID is
specified (for example, /Right), then the right side of the widget is attached to
the right side of the parent widget.

Top — If a widget ID is specified (for example, Top=wid), then the top of the wid-
get is attached to the bottom of the specified widget. If no widget ID is specified
(for example, /Top), then the top of the widget is attached to the top of the parent
widget.

Get/Set Value

getvalue — Gets the Boolean array (0...rows–1, 0...cols–1) of selected cells. For
information on cell selection, see the Discussion section.

setvalue — A two-element vector [row, column] specifying the cell to select.

WwTable Function 343

Callback Parameters

Any table widget callback procedure must have the following three parameters:

wid — The table widget ID.

cell — A two-element vector [row, column] specifying the modified cell.

value — A string containing the new contents of the modified cell.

Discussion

Part of the resource specification for labeling the columns and rows can be speci-
fied using the Name keyword, otherwise the defaults are the
*table.columnLabel and the *table.rowLabel resources, respectively
(where columnLabel and rowLabel are the attributes).

TIP The Clabels and Rlabels keywords provide a method for “hard-coding” the
column and row labels (respectively) in the application. For greater flexibility, cre-
ate a resource file containing the column and row labels using a text editor, and load
the resource specifications using WtResource. The Name keyword can then be used
in the WwTable calling sequence to specify the resources.

Selecting Cells for Editing

When a cell is selected for editing, it is considered the current cell. You can delete
and add characters in the current cell using the keys on your keyboard.

• To edit a cell, select it by clicking the left mouse button in the cell.

• To edit the cell to the left of the current cell, press the <Shift> and <Tab> keys
at the same time.

• To edit the cell to the right of the current cell, press the <Tab> key.

• To edit the cell above the current cell, press the up arrow key.

• To edit the cell on the bottom of the current cell, press the down arrow key.

Selecting One or More Cells

This section describes how to select cells for operations other than editing.

• To select a single cell, click the middle mouse button on the cell.

• To extend the selection, press the <Shift> key and click the middle mouse
button.

344 Application Developer’s Guide

• To deselect the cell, press the <Shift> and <Control> keys at the same time and
click the middle mouse button.

• To toggle the selection press the <Control> key and click the middle mouse
button.

• To select a rectangular region of cells, press the middle mouse button, drag the
mouse, and then release the middle mouse button.

• To select, deselect, extend, or toggle the selection of an entire row or column,
click the middle mouse button (with appropriate keys listed above pressed) on
the row or column label.

Example 1

The following example displays data stored in the phone_data variable in the
save file:

WAVE_DIR/data/phone_example.sav

To restore this file, enter the following commands:

.RUN

RESTORE, !Data_Dir + ’phone_example.sav’

COMMON Tablecomm, phone_data

END

Callback Procedures

PRO tableCB, wid, which, text

COMMON Tablecomm, phone_data
PRINT, ’Table’, which, text
status = WwSetValue(wid, which)
PRINT, WwGetValue(wid)

END

PRO ButtonCB, wid, data

COMMON Tablecomm, phone_data
PRINT, ’Table Selected’
shell = WwMainWindow(wid, form, /Vertical, $
TITLE = ’Table’)

clrs = INTARR(N_TAGS(phone_data), $
N_ELEMENTS(phone_data))

FOR i = 0, N_ELEMENTS(phone_data)-1 DO $
clrs(*, i) = INDGEN(N_TAGS(phone_data)) * 20 $
rlabs = STRTRIM(STRING(INDGEN(N_ELEMENTS(phone_data))), 2)

table = WwTable(form,’tableCB’,phone_data, $

WwTable Function 345

Colors=clrs,Visible=[10,N_TAGS(phone_data)-4], $
Clabels=TAG_NAMES(phone_data), Rlabels = rlabs, $
/Vertical)

status = WwSetValue(shell, /Display)

END

Widget Commands

top = WwInit(’tble_ex’, ’Examples’, layout)

label = [’Table’]

button = WwButtonBox(layout, label, ’ButtonCB’)

status = WwSetValue(top, /Display)

WwLoop

Example 2

This example demonstrates the use of the Setcells and Setcelldata keywords. In this
program fragment, the contents of table cells are set to the value of the row number
times the column number.

Callback Procedures

FUNCTION settableCLBK, wid, data, n, r, c

 PRINT, data

 RETURN, STRTRIM(STRING(r * c), 2)

; Return the string value of the product of row times column.

END

PRO buttonCB, wid, data

COMMON Tablecomm, phone_data

PRINT, ’Table Selected’

shell = WwMainWindow(wid, form, /Vertical, $
TITLE = ’Table’)

table = WwTable(form, ’tableCLBK’, Visible=[10,5], $
Rows=40, Cols=50, Setcells = ’settableCLBK’, $
Setcelldata=’any var’)

status = WwSetValue(shell, /Display)

END

Widget Commands

top = WwInit(’tble_ex20’, ’Examples’, layout)

label = [’Table’]

346 Application Developer’s Guide

button = WwButtonBox(layout, label, ’buttonCB’)

status = WwSetValue(top, /Display)

WwLoop

See Also

WtTable, WwTableUtils

For more information about how to write an application program based on WAVE
Widgets, refer to Chapter 5, Using WAVE Widgets.

For additional information on the color and font keywords, see Setting Colors and
Fonts on page 201.

For additional information on attachment keywords, see Form Layout: Attachments
on page 170.

For information on Get and Set values, see Setting and Getting Widget Values on
page 206.

WwTableUtils Function
Manages the contents of a table widget.

Usage

status = WwTableUtils(wid [, param1, ..., param9])

Input Parameters

wid — The widget ID of a WwTable widget.

param1, ..., param9 — (optional) These parameters depend on keyword use in the
function calling sequence. See Keywords for more information.

Returned Value

status — A value indicating success or failure of the WwTableUtils call.

1 Indicates success.

0 Indicates failure.

WwTableUtils Function 347

Keywords

Add — Add specified rows or columns to the table at the specified position. This
keyword must be used with either the Columns or the Rows modifier keywords.

If the Columns modifier keyword is used, you must specify all of the following
parameters:

param1 — The column before which new columns are added.

param2 — A 2D string array of column values.

param3 — The number of columns to be added.

param4 — A 1D array of column widths.

param5 — A 1D array of column labels.

param6 — A 1D array of column maximum lengths.

param7 — A 1D array of column alignments. Valid values are:

 0 Align cell contents to cell’s left edge (left justify).

 1 Center cell contents (center justify).

 2 Align cell contents to cell’s right edge (right justify).

param8 — A 1D array of column label alignments. Valid values are:

0 Align cell contents to cell’s left edge (left justify).

 1 Center cell contents (center justify).

 2 Align cell contents to cell’s right edge (right justify).

param9 — A 2D array of column cell colors.

If the Rows modifier keyword is used, you must specify all of the following
parameters:

param1 — The row before which new rows are added.

param2 — A 2D string array of row values.

param3 — The number of rows to be added.

param4 — A 1D array of row labels.

param5 — A 2D array of row cell colors.

348 Application Developer’s Guide

CancelEdit — If nonzero, cancels the edit made to the currently edited cell. (See
the Edit keyword.)

CommitEdit — If nonzero, commits the edit made to the currently edited cell. (See
the Edit keyword.)

Delete — Deletes specified rows or columns from the table at the specified posi-
tion. This keyword must be used with either the Columns or the Rows modifier
keywords. If you use the Delete keyword, you must also specify the following
parameters:

param1 — (long) The position (row or column) in the table to begin
deleting.

param2 — The number of rows or columns to delete.

Deselect — Deselects specified rows or columns. If the All modifier keyword is
used with Deselect, all rows and columns are deselected. If used with the Rows or
Columns modifier keywords, the specified rows or columns are deselected, and the
following parameter must be specified:

param1 — Index of row or column to deselect.

Edit — If nonzero, begin editing at the specified row and column. If used with the
Cell modifier keyword, begin editing at the specified cell. If you use the Edit key-
word, you must also specify the following parameters:

param1 — Row of the cell to edit.

param2 — Column of the cell to edit.

Get — If used with the Cell modifier keyword, WwTableUtils returns the value of
the specified cell (not 1 or 0). The parameters param1 and param2 must be used:

param1 — Row of the cell to get.

param2 — Column of the cell to get.

If used with the Visible modifier keyword, returns the rectangle of a visible cell, and
the following parameters must be used:

param1 — (output) The top row of the cell.

param2 — (output) The bottom row of the cell.

param3 — (output) The left column of the cell.

param4 — (output) The right column of the cell.

WwTableUtils Function 349

Make — Makes the specified cell visible. This keyword must be used with the Vis-
ible modifier keyword, and you must also use the following parameters:

param1 — The row of the cell to make visible.

param2 — The column of the cell to make visible.

Redraw — Redraws the specified cell. This keyword must be used with the Cell
modifier keyword, and you must also use the following parameters:

param1 — The row of the cell to redraw.

param2 — The column of the cell to redraw.

Select — If used with the Columns or Rows modifier keywords, selects the speci-
fied rows or columns, and the following parameter must be used:

param1 — The index of the row or column to select.

If used with the Cell modifier keyword, selects specified cells, and the following
parameters must be specified:

param1 — The row of the cell to select.

param2 — The column of the cell to select.

Set — Sets the value or color of a cell or column. This keyword must be used with
the Cell, or Color and Rows, or Color and Columns modifier keywords.

If you use Set with the Cell modifier keyword, you must specify the following
parameters:

param1 — The row of the cell to set.

param2 — The column of the cell to set.

param3 — The new value of the specified cell.

If you use Set with the Color and Rows modifier keywords, you must specify the
following parameters:

param1 — The row at which to start setting colors.

param2 — A 2D array of new color table indices for rows.

param3 — The number of colors in the Color array.

If you use Set with the Color and Columns modifier keywords, you must specify
the following parameters:

350 Application Developer’s Guide

param1 — The column at which to start setting colors.

param2 — A 2D array of new color map indices for columns.

param3 — The number of elements in the Color array.

Modifier Keywords

NOTE These modifier keywords must be used in conjunction with the keywords
listed.

All — When nonzero, deselects all cells in the table.

Cell — When nonzero, selects, deselects, edits, gets, or sets the color of the speci-
fied cell.

Columns — When nonzero, adds, deletes, deselects, or selects columns from the
table.

Color — When nonzero, sets cell or column colors.

Rows — When nonzero, adds, deletes, deselects, or selects rows from the table.

Visible — When nonzero, obtains visible cells or makes cells visible.

Discussion

This function facilitates the portability between Microsoft Windows and X Win-
dows applications.

Examples

The following ten code fragments demonstrate various uses of the WwTableUtils
function.

(1) Add rows to a table
new_strings = STRTRIM(STRING(LONARR(numcols, numrows)), 2)

new_rlabels = STRTRIM(STRING(LINDGEN(numrows)+start_row), 2)

status = WwTableUtils (tbl_wid, $
start_row, $; add after this row
new_strings, $; use '0' strings
numrows, $; number of new rows
new_rlabels, $; new row labels
/Add, /Rows)

WwTableUtils Function 351

(2) Delete rows from a table
status = WwTableUtils (tbl_wid, $

start_row, $; start location
numrows, $; number of rows to delete
/Delete, /Rows)

(3) Add columns to a table
new_strings = STRTRIM(STRING(LONARR(numcols, numrows)), 2)

new_clabels = STRTRIM(STRING(LINDGEN(numcols)+ $
start_column), 2)

new_colwidths = LONARR(numcols)+10

status = WwTableUtils (tbl_wid, $
start_column, $; add after this column
new_strings, $; use '0' strings
numcols, $; number of new columns
new_colwidths, $; new column widths
new_clabels, $; new column labels
/Add, /Columns)

(4) Delete columns from a table
status = WwTableUtils (tbl_wid, $

start_column, $; start location
numcols, $; number of columns to delete
/Delete, /Columns)

(5) Get visible cells
status = WwTableUtils (tbl_wid, top_row, bottom_row, $

left_column, $
right_column, $
/Get, /Visible)

(6) Set the value of an individual cell
status = WwTableUtils (tbl_wid, row, col, value, $

/Set, /Cell)

(7) Redraw a cell
status = WwTableUtils (tbl_wid, row, col, /Redraw, /Cell)

352 Application Developer’s Guide

(8) Deselect all cells
status = WwTableUtils (tbl_wid, /Deselect, /All)

(9) Select a cell
status = WwTableUtils (tbl_wid, row, col, /Select, /Cell)

(10) Make a cell visible
status = WwTableUtils (tbl_wid, row, col, /Make, /Visible)

See Also

WwTable

WwText Function
Creates a text widget that can be used for both single-line text entry or as a full text
editor. In addition, this function can create a static text label.

Usage

text = WwText(parent, verifyCallback)

Input Parameters

parent — The widget ID of the parent widget.

verifyCallback — (Optional) A string containing the name of a callback routine
that is executed when the contents of the text field changes.

Returned Value

text — The text widget ID.

Keywords

Cols — Specifies the number of columns in the text field (in characters).

File — Specifies a name of a file containing text.

WwText Function 353

HScroll — (Windows only) If nonzero, multiline text windows are created with a
horizontal scroll bar.

Label — If nonzero, the widget is a label (static text). The value of the label is set
using the Text keyword. If Label is nonzero and Text is not used, the function looks
for a label in a resource specification (see Discussion).

If the Label keyword is set to a string value, the text field (single line) widget or
text edit (multi-line) widget is preceded by this string.

Layout_name — A string containing the name of the Form widget created when
Form is specified and both Text and Label are specified as strings. The
Layout_name specified is part of the resource specification. (Default: caption)

Name — Specifies the name of the Label and/or Text widgets. The Name specified
is part of the resource specification containing the label or text widget names. The
default for Name depends on other keywords being specified and how they are
specified in the WwText usage.

If both Label and Text are specified as null strings, Name is a two-element
string array naming the Text widget and the Label widget (in that order).
(Default: *caption.text.value; and
*caption.label.labelString, respectively)

Pixmap — Specifies a filename containing a pixmap or bitmap file to be displayed
as a label. This keyword is used in conjunction with the Label keyword.

Position — If the text widget is to be placed in a bulletin board layout, use this key-
word to specify the x, y coordinates of the text widget within the bulletin board.

Read — If present and nonzero, the text widget is read only.

Rows — Specifies the number of rows in the text field.

Text — Specifies a label for the text field. If Text is not defined or is defined as a
null string, the function looks for the text field label in a resource specification (see
Discussion).

VScroll — (Windows only) If nonzero, multiline text windows are created with a
vertical scroll bar.

Color/Font Keywords

Background — Specifies the background color name.

Font — Specifies the name of the font used for text.

Foreground — Specifies the foreground color name.

354 Application Developer’s Guide

Attachment Keywords

Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the text widget is attached to the top of the specified widget. If no widget ID
is specified (for example, /Bottom), then the bottom of the text widget is attached
to the bottom of the parent widget.

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the text widget is attached to the right side of the specified widget. If no widget ID
is specified (for example, /Left), then the left side of the text widget is attached
to the left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the text widget is attached to the left side of the specified widget. If no widget
ID is specified (for example, /Right), then the right side of the text widget is
attached to the right side of the parent widget.

Top — If a widget ID is specified (for example, Top=wid), then the top of the text
widget is attached to the bottom of the specified widget. If no widget ID is specified
(for example, /Top), then the top of the text widget is attached to the top of the
parent widget.

Get/Set Value

getvalue — A string containing the displayed text.

setvalue — A string containing the displayed text.

Callback Parameters

Any text widget callback procedure must have the following two parameters:

wid — Text widget ID.

parent — Parent widget ID.

Discussion

If the Label keyword is set to a null string and Name is not used, the function looks
in *caption.label.labelString for the label resource. The text resource
can also be specified using the Name keyword if the Text keyword is specified as a
null string. The text resource default is *caption.text.labelString.

Windows USERS By default, if the linelength or number of lines of text in the
widget exceeds the size of the widget, horizontal and/or vertical scroll bars are

WwText Function 355

attached to the widget automatically. To force the attachment of scroll bars to a text
widget, use the HScroll and/or VScroll keywords. When these keywords are used,
scroll bars will not dynamically appear or disappear once the text widget is created.

TIP The Label and Text keywords provide a method for “hard-coding” labels and
text field labels (respectively) in the application. For greater flexibility, define a
resource file containing the label or text by using WtResource, and use the Name
keyword in the WwText calling sequence to access the resources.

Example 1: Single-line Text Field and Label

This example creates a layout widget containing a single-line text field and a label.
The callback is executed when the user enters text in the text field and presses
<Return>.

Enter the callback procedure into a file, and compile the procedure with the .RUN
command. Then, enter the widget commands at the WAVE> prompt (or enter them
in a command file and run it with the @ command). To dismiss the button box,
select the appropriate function (such as Close) from the window manager menu.

Callback Procedure

PRO TextCB, wid, data

PRINT, ’Text done’

value = WwGetValue(wid)

PRINT, value

END

Widget Commands
top=WwInit(’ww_ex35’, ’Examples’, layout, /Form)

; Initialize WAVE Widgets and create the form layout widget.

label = WwText(layout, /Label, Text=’This is Label’)

; Create the label widget.

text = WwText(layout, ’TextCB’, Cols=40, left=label)

; Create the single-line text field widget, attaching it to the right edge of
; the label widget.

status = WwSetValue(top, /Display)

WwLoop

356 Application Developer’s Guide

Example 2: Multi-line Text Window

This example creates a multi-line text window. Because the Read keyword is used,
the text is read-only.

Callback Procedure

PRO TextCB, wid, data

PRINT, ’Text done’

value = WwGetValue(wid)

PRINT, value

END

Widget Commands

top = WwInit(’ww_ex36’, ’Examples’, layout)

filename = GETENV(’WAVE_DIR’)+’/Tips’

text = WwText(layout, ’TextCB’, /Read, $
File = filename, Cols=40, Rows=20)

status = WwSetValue(top, /Display)

WwLoop

See Also

WgTextTool (see the PV-WAVE Reference)

For more information about how to write an application program based on WAVE
Widgets, refer to Chapter 5, Using WAVE Widgets.

For additional information on the color and font keywords, see Setting Colors and
Fonts on page 201.

For additional information on attachment keywords, see Form Layout: Attachments
on page 170.

For information on Get and Set values, see Setting and Getting Widget Values on
page 206.

WwTimer Function 357

WwTimer Function
Registers a WAVE Widgets timer procedure.

Usage

status = WwTimer(time, timer_proc [, userdata])

Input Parameters

time — Specifies the time interval in milliseconds.

timer_proc — Specifies the name of a PV-WAVE timer procedure.

userdata — (optional) User-defined data.

Returned Value

status — A value indicating success or failure of the timer registration.

1 Indicates success.

0 Indicates failure.

Keywords

None.

Timer Procedure Parameters

The following parameters are required for the timer procedure:

wid — The ID of the top-level widget.

userdata — User-defined data.

Discussion

This procedure relies on the WtTimer procedure to add a timer in Once_Only mode
(the timer procedure is executed only once after the specified time interval).

358 Application Developer’s Guide

Example

This example comes from the code for the WzAnimate VDA Tool. The procedure
shown in this example is used by the WzAnimate VDA Tool to restart the timer.

PRO WzAnimateStartTimer, tool_name

; Forward declaration of function.
DECLARE FUNC, TmGetAttribute

DECLARE FUNC, TmSetAttribute

delay = TmGetAttribute(tool_name, ’TM’, ’DELAY’)

timerid = WwTimer(delay, ’WzAnimateTimerCB’, tool_name)

tmp = TmSetAttribute(tool_name, ’TM’, ’TIMER’, 1B)

END

See Also

WtTimer

WwToolBox Function
Creates an array of graphic buttons (icons).

Usage

toolb = WwToolBox(parent, labels, callback)

Input Parameters

parent — The widget ID of the parent widget.

labels — A string array of icon file names.

callback — A string containing the name of the callback routine that is executed
when a button is selected.

Returned Value

toolb — The ID of the tool box widget. If only one button is requested, that button’s
widget ID is returned.

WwToolBox Function 359

Input Keywords

Border — Specifies the width in pixels of the tool box and icon borders. The
default is 0.

Center — An array specifying the position of the left and right edge of buttons as
a percentage of tool box width. By default, buttons are spaced evenly in the box.

Form — When present and nonzero, buttons are placed in a form layout and all
specified attachment keywords are honored (i.e., /Left, /Right, /Top, /Bottom). By
default, buttons are placed in a row/column layout.

Horizontal — When present and nonzero, creates a horizontally aligned row of
buttons (the default).

Layout_name — Names the Form widget (if Form is specified), or the RowCol-
umn widget (if Horizontal or Vertical is specified). (Default: tools)

Measure — If you create a horizontal box, then measure specifies the number of
rows into which the buttons will be divided. For a vertical box, this keyword spec-
ifies the number of columns in which to divide the buttons.

Nofmany — Used in conjunction with the Radio keyword. If nonzero, creates non-
exclusive radio buttons where any number of buttons can be selected at once.

Oneofmany — Used in conjunction with the Radio keyword. If nonzero, creates
exclusive radio buttons where only one button can be selected at a time. (Refer to
the note regarding the callback input parameter in the Discussion section for more
information on using Oneofmany.)

Position — If the tool box widget is to be placed in a bulletin board layout, use this
keyword to specify the x, y coordinates of the tool box widget within the bulletin
board.

Radio — If nonzero, uses radio (toggle) buttons. (Default: push buttons.)

ShadowThickness — (UNIX only) If specified and nonzero, sets the shadow thick-
ness of the button in pixels. (Default: 2)

Spacing — Specifies the space in pixels between buttons. The default is 0.

Vertical — When present and nonzero, creates a vertically aligned column of
buttons.

Output Keywords

Tools — Returns an array of graphical button (icon) widget IDs.

360 Application Developer’s Guide

Color/Font Keywords

Background — Specifies the background color name.

Basecolor — Specifies the base color.

Font — Specifies the name of the font used for button text.

Foreground — Specifies the foreground color name.

Attachment Keywords

Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the tool box widget is attached to the top of the specified widget. If no
widget ID is specified (for example, /Bottom), then the bottom of the tool box
widget is attached to the bottom of the parent widget.

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the tool box widget is attached to the right side of the specified widget. If no widget
ID is specified (for example, /Left), then the left side of the tool box widget is
attached to the left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the tool box widget is attached to the left side of the specified widget. If no wid-
get ID is specified (for example, /Right), then the right side of the tool box
widget is attached to the right side of the parent widget.

Top — If a widget ID is specified (for example, Top=wid), then the top of the tool
box widget is attached to the bottom of the specified widget. If no widget ID is
specified (for example, /Top), then the top of the tool box widget is attached to
the top of the parent widget.

Get/Set Value

getvalue — Icon (pixmap) ID.

setvalue — The icon file name.

 Callback Parameters

Any toolbox callback procedure must have these parameters:

wid — Button widget ID.

index — Index of the button pushed (1 – n).

WwToolBox Function 361

Discussion

This function creates a box containing iconic buttons arranged in rows and/or col-
umns. If you only create a single button, then the box widget is not created — only
the button widget is created.

NOTE The callback procedure is called twice if the Oneofmany keyword is spec-
ified. It is called once when the previously selected button is deselected and again
for the newly selected button. Use WwGetValue to determine if a button is cur-
rently selected or deselected.

Example

This example creates a box containing graphical buttons (a toolbox). The callback
routine, PickedCB, is executed when one of the toolbox buttons is selected.

Enter the callback procedure into a file, and compile the procedure with the .RUN
command. Then, enter the widget commands at the WAVE> prompt (or enter them
in a command file and run them with the @ command. To dismiss the tool box,
select the appropriate function (such as Close) from the window manager menu.

Callback Procedure

PRO PickedCB, wid, which

CASE which OF

1: PRINT,’Search Selected’

2: PRINT,’Toc Selected’

3: PRINT,’Topics Selected’

4: PRINT,’Quit Selected’

ENDCASE

END

Widget Commands

top = WwInit(’ww_ex37’, ’Examples’, layout, height=300, width=600)

pixmaps = [GETENV(’WAVE_DIR’)+ $
’/xres/wxpm_btn_help_search’,$
GETENV(’WAVE_DIR’)+ $
’/xres/wxpm_btn_help_toc’,$
GETENV(’WAVE_DIR’)+ $
’/xres/wxpm_btn_help_topics’,$
GETENV(’WAVE_DIR’)+ $
’/xres/wxpm_btn_help_quit’]

362 Application Developer’s Guide

dbox = WwToolBox(layout, pixmaps, ’PickedCB’, /Vertical, $
Spacing=20, Measure=2)

status = WwSetValue(top, /Display)

WwLoop

Windows USERS In the preceding code, you must change the icon names as
follows: change wxpm to wxbm and add the extension .bmp. For example, change
wxpm_btn_help_search to wxbm_btn_help_search.bmp.

See Also

For more information about how to write an application program based on WAVE
Widgets, refer to Chapter 5, Using WAVE Widgets.

For additional information on the color and font keywords, see Setting Colors and
Fonts on page 201.

For additional information on attachment keywords, see Form Layout: Attachments
on page 170.

For information on Get and Set values, see Setting and Getting Widget Values on
page 206.

363

CHAPTER

8

Widget Toolbox Reference

WtAddCallback Function (Motif Only)
Registers a callback routine for a given widget.

Usage

status = WtAddCallback(widget, reason, callback [, client_data])

Input Parameters

widget — The widget ID of the widget to add the callback to (long).

reason — A string containing the callback reason. This parameter is GUI-depen-
dent. See the Discussion section below for more information.

callback — A string containing the name of the callback routine.

client_data — A variable. The value of this variable is passed to the callback
routine.

Returned Value

status — One (1) indicates success; zero (0) indicates failure.

364 Application Developer’s Guide

Keywords

Noparams — If present and nonzero, the callback is called with two parameters:
wid and data. All other parameters, as discussed in Appendix B, Motif Callback
Parameters.

Discussion

Windows USERS The use of WtAddCallback is not supported for Windows.

Callback reasons are listed throughout the OSF/Motif Programmer’s Reference.

To use a callback reason in PV-WAVE, remove the XmN or XtN prefix. For
example:

The application can optionally use the client_data parameter to specify some appli-
cation-defined data to be passed to the callback procedure when the callback is
invoked. If client_data is a local variable (defined only in the current procedure), a
copy of that variable is created and passed (passed by value). If the client_data is
a global variable (defined in a Common Block), it is passed by reference.

Example

This example creates a Motif button labeled Done. When you select the button, the
widget is destroyed. To run the example, enter the callback and the example proce-
dures in a file and run them with .RUN.

Callback Procedure Example: Motif

This is the callback routine. Note that the callback routine for the pushbutton wid-
get class requires six parameters. The required callback parameters for Motif
widget classes are discussed in Motif Widget Classes on page A-1.

PRO CancelHelp, wid, data, npar, reason,$
event, count

COMMON block, top

status=WtClose(top)

END

Motif Reason WAVE Widget Reason

XmNactivateCallback activateCallback

WtAddHandler Function 365

Example Procedure

PRO example

COMMON block, top

@wtxmclasses.pro

top=WtInit(’wt_ex1’, ’Examples’)

widget=WtCreate(’Done’, xmPushButtonWidgetClass, top)

status=WtAddCallback(widget, ’activateCallback’, ’CancelHelp’)

status=WtSet(top, /Realize)

WtLoop

END

See Also

WwCallback

WtAddHandler Function
Registers the event handler function for a given widget.

Usage

status = WtAddHandler(widget, eventmask, handler [, client_data])

Input Parameters

widget — The ID of the widget to add the event handler to (long).

eventmask — The value of the X Event mask (long). See the wtxlib.pro file in
the Standard Library and the Xlib Reference Manual (O’Reilly & Associates, Inc.,
1989) for more information on this parameter.

handler — A string containing the X event handler procedure name.

client_data — A variable. The value of this variable is passed to the callback
routine.

Returned Value

status — One (1) indicates success; zero (0) indicates failure.

366 Application Developer’s Guide

Keywords

Nonmaskable — If present and nonzero, nonmaskable events are intercepted by
the event handler. Such events include GraphicsExpose, NoExpose, Selection-
Clear, SelectionRequest, SelectionNotify, ClientMessage, and MappingNotify.

Noparams — If nonzero, calls the event handler procedure with three parameters;
widget (the widget ID), client_data, and the event structure.

Discussion

Windows USERS Visual Numerics has ported a subset of the Widget Toolbox
(Wt) functionality that is available for Motif to Microsoft Windows. Because the
Widget Toolbox under Windows is not a complete implementation, we recommend
that Windows developers use the WAVE Widgets (Ww) layer or the VDA Tools
when developing GUI applications.

An event handler is a PV-WAVE procedure that is executed when a specific type of
event occurs within a widget. Some, all, or no X events can be handled using one
or more event handlers.

Under Windows, Windows events are mapped to X events as follows:

Windows Events X Events

WM_KEYDOWN, WM_CHAR,
WM_SYSCHAR

KeyPressMask

WM_KEYUP KeyReleaseMask

WM_KILLFOCUS, WM_SETFOCUS FocusChangeMask (FocusOut,
FocusIn)

WM_LBUTTONDOWN,
WM_MBUTTONDOWN,
WM_RBUTTONDOWN

ButtonPressMask

WM_LBUTTONUP,
WM_MBUTTONUP,
WM_RBUTTONUP

ButtonReleaseMask

WM_NCHITTEST,
WM_MOUSEMOVE

PointerMotionMask

WM_PAINT ExposureMask

WtAddHandler Function 367

Event Structure for Windows Platforms

The event structure returned by the event handler (or callback) procedure on Win-
dows platforms contains the following tag fields:

event — Event handle.

type — Event type (ButtonPress, KeyPress etc., as listed in the file wtxlib.pro
in the Standard Library).

hwnd — Windows window handle.

message — Windows message ID.

wParam — Windows WPARAM.

lParam — Windows LPARAM.

time — Time of the event.

x — x-coordinate of the mouse pointer.

y — y-coordinate of the mouse pointer.

state — Indicates the state of all of the buttons and modifier keys at the time of the
event, represented by a mask of the button and modifier key symbols.

button — Indicates which button changed state to trigger this event.

For information on the requirements for writing event handler procedures, see
Adding Event Handlers on page 223.

Example

The following code fragments demonstrate the use of WtAddHandler.

.

.

pane=WtCreate(’menu’, PopupMenuWidget, parent)

status = WtAddHandler(pane, ButtonPressMask, $
’PostMenu’, parent)

WM_SIZE,
WM_WINDOWPOSCHANGED

StructureNotifyMask

WM_PALETTECHANGED,
WM_SYSCOLORCHANGE

ColormapChangeMask

Windows Events X Events

368 Application Developer’s Guide

.

.

PRO PostMenu, wid, parent, nparams, mask,event

@wtxlib

status=WtPointer("GetLocation", wid,state)

if (Button3Mask AND state(6)) ne 0 then $

 status=WtSet(pane,POPUP=event)

END

X Event Handler Procedure Example

PRO handler, widget, data, nparams, mask, event

...

END

See Also

For more information about how to write an application program based on the PV-
WAVE Widget Toolbox, refer to Chapter 6, Using the Widget Toolbox.

WtClose Function
Closes the current Xt session, and destroys all children of the top-level widget cre-
ated in WtInit. This routine can also be used to destroy additional widget trees.

Usage

status = WtClose(widget)

Parameters

widget — The widget ID of the top-level shell (long).

Returned Value

status — One (1) indicates success; zero (0) indicates failure.

Keywords

None.

WtClose Function 369

Discussion

Windows USERS Visual Numerics has ported a subset of the Widget Toolbox
(Wt) functionality that is available for Motif to Microsoft Windows. Because the
Widget Toolbox under Windows is not a complete implementation, we recommend
that Windows developers use the WAVE Widgets (Ww) layer or the VDA Tools
when developing GUI applications.

This function is usually called in a callback routine to destroy a popup shell (dialog,
etc.).

Example

This example creates a Motif button labeled Done. When you select the button, the
widget is destroyed. To run the example, enter the callback and the example proce-
dures in a file and run them with .RUN.

Callback Procedure Example: Motif

This is the callback routine. Note that the callback routine for the pushbutton wid-
get class requires six parameters. The required callback parameters for Motif
widget classes are discussed in Appendix B, Motif Callback Parameters.

PRO CancelHelp, wid, data, npar, reason, event, count

COMMON block, top

status=WtClose(top)

END

Example Procedure

PRO example

common block, top

@wtxmclasses.pro

top=WtInit(’wt_ex2’, ’Examples’)

widget=WtCreate(’Done’, xmPushButtonWidgetClass, top)

status=WtAddCallback(widget, ’activateCallback’, ’CancelHelp’)

status=WtSet(top, /Realize)

WtLoop

END

370 Application Developer’s Guide

See Also

For more information about how to write an application program based on the PV-
WAVE Widget Toolbox, refer to Chapter 6, Using the Widget Toolbox.

WtCreate Function (Motif Only)
Creates a widget or shell instance specified by widget class.

Usage

widget = WtCreate(name, class, parent [, argv])

Parameters

name — A string containing the name of the widget or shell to be created.

class — A constant value specifying the widget or shell class (long). See Appendix
A, Motif Widget Classes for a list of Motif widget classes.

parent — The widget or shell ID of the parent (long).

argv — A structure that contains the arguments or resources for the widget or shell.

Returned Value

widget — A newly created widget. If the function fails, zero (0) is returned.

Keywords

ConfirmClose — A string containing the name of the procedure called when the
user selects the Close or Quit menu button from the window manager menu.

UserData — A variable. If the ConfirmClose keyword is specified, the value of this
variable is passed to the Close or Quit callback procedure.

Discussion

The ConfirmClose keyword lets you control what happens when the user selects
Close or Quit from the window manager menu. Normally, the window from which
the menu item was selected is destroyed; however, you might want to display a con-
firmation dialog box or take another action instead of simply allowing the window

WtCreate Function (Motif Only) 371

to be destroyed. The callback procedure specified by ConfirmClose destroys the
window when appropriate.

The ConfirmClose procedure you specify accepts two parameters: wid and
user_data, where:

wid = The widget ID of the top-level shell of the application.

user_data = The variable specified via the User_Data keyword. If
User_Data is not specified, 0 (zero) is passed to the ConfirmClose routine.

If specified, your ConfirmClose routine must close the top-level shell of the appli-
cation. An example of a simple ConfirmClose routine which just closes the shell is:

PRO MyConfirmClose, wid, user_data

s = WwSetValue(wid, /Close)

END

If ConfirmClose is not specified, then the shell is simply closed.

Example
items=REPLICATE({FLATNON,label:’’, mnemonic:’’},3)

items(0)={FLATNON,’Bold’,’B’}

items(1)={FLATNON,’Italic’,’I’}

items(2)={FLATNON,’Underline’,’U’}

fargs = {,items:items}

widget=WtCreate(’fnon’, $
flatNonexclusivesWidgetClass, parent, fargs)

NOTE All widgets are managed when created. To unmanage them after creation
use WtSet(wid,/Unmanage).

See Also

WtSet

For more information about how to write an application program based on the PV-
WAVE Widget Toolbox, refer to Chapter 6, Using the Widget Toolbox.

372 Application Developer’s Guide

WtCursor Function
Sets or changes the cursor.

Usage

status = WtCursor(function, widget [, index])

Parameters

function:

’Default’ — The default is the system cursor.

’System’ — Sets the default system cursor.

’Wait’ — Sets the wait cursor.

’Set’ — Sets the specified cursor. If ’Set’ is specified, the index parameter
follows:

• index — The cursor index (e.g., XC_X_cursor). See Appendix C, Widget
Toolbox Cursors for a list of cursors.

widget — The ID of the widget for which the cursor is being set.

Returned Value

status — One (1) indicates success; zero (0) indicates failure.

Discussion

Windows USERS Visual Numerics has ported a subset of the Widget Toolbox
(Wt) functionality that is available for Motif to Microsoft Windows. Because the
Widget Toolbox under Windows is not a complete implementation, we recommend
that Windows developers use the WAVE Widgets (Ww) layer or the VDA Tools
when developing GUI applications.

This routine changes the current cursor for a given widget to a new cursor defined
by index. The following cursors are available:

• All XC_* cursor types (for Motif and Windows) are listed in Appendix C,
Widget Toolbox Cursors. For additional information on these cursors, see

WtCursor Function 373

Appendix I of the Xlib Reference Manual, Volume 2, (O’Reilly & Associates,
Inc., 1989).

• A set of custom cursors designed by Visual Numerics listed in Appendix C,
Widget Toolbox Cursors.

Example

This example demonstrates a callback called to display the heartbeat.dat file
with the WgMovieTool procedure. Because it takes a while to read the data file into
PV-WAVE, the wait cursor is set before the file is read to notify the user that the file
is being read:

PRO MovieCB, wid, index

@wtcursor

top = WwGetValue(wid, /Userdata)

CASE index OF

 1: BEGIN

 status = WtCursor(’WAIT’, top)

 heart = BYTARR(256, 256, 15)

IF !Version.platform EQ ’vms’ THEN $

 OPENR, u, getenv(’WAVE_DIR’)+ $
 ’[data]heartbeat.dat’, /Get_Lun

 ELSE

 OPENR, u, !Data_Dir + ’heartbeat.dat’, /Get_Lun

 READU, u, heart

 CLOSE, u

 WgMovieTool, heart, top, movie, widx, 1, /Popup, /Do_tvscl

 status = WtCursor(’DEFAULT’, top)

 END

 2: BEGIN

 status = WwSetValue(top, /Close)

 END

 ENDCASE

END

See Also

For more information about how to write an application program based on the PV-
WAVE Widget Toolbox, refer to Chapter 6, Using the Widget Toolbox.

374 Application Developer’s Guide

WtGet Function
Retrieves widget resources.

Usage

value = WtGet(widget [, resource])

Parameters

widget — The widget ID.

resource — (optional, Motif only) A string containing the name of the requested
resource. This parameter is GUI-dependent. See the Discussion section for more
information.

Returned Value

value — A variable in which the value of the resource is returned. The data type of
value depends on the requested resource.

Keywords

Child=child — (Motif only) Returns the ID of the child widget in a composite wid-
get, such as a Command or FileSelection widget:

Legal values for a Command widget:

• XmDIALOG_COMMAND_TEXT

• XmDIALOG_PROMPT_LABEL

• XmDIALOG_HISTORY_LIST

Legal values for a FileSelection widget:

• XmDIALOG_APPLY_BUTTON

• XmDIALOG_CANCEL_BUTTON

• XmDIALOG_DEFAULT_BUTTON

• XmDIALOG_DIR_LIST

• XmDIALOG_DIR_LIST_LABEL

• XmDIALOG_FILTER_LABEL

WtGet Function 375

• XmDIALOG_FILTER_TEXT

• XmDIALOG_HELP_BUTTON

• XmDIALOG_LIST

• XmDIALOG_LIST_LABEL

• XmDIALOG_OK_BUTTON

• XmDIALOG_SELECTION_LABEL

• XmDIALOG_SEPARATOR

• XmDIALOG_TEXT

• XmDIALOG_WORK_AREA

For a MessageBox widget:

• XmDIALOG_CANCEL_BUTTON

• XmDIALOG_DEFAULT_BUTTON

• XmDIALOG_HELP_BUTTON

• XmDIALOG_MESSAGE_LABEL

• XmDIALOG_OK_BUTTON

• XmDIALOG_SEPARATOR

• XmDIALOG_SYMBOL_LABEL

For a SelectionBox widget:

• XmDIALOG_APPLY_BUTTON

• XmDIALOG_CANCEL_BUTTON

• XmDIALOG_DEFAULT_BUTTON

• XmDIALOG_HELP_BUTTON

• XmDIALOG_LIST

• XmDIALOG_LIST_LABEL

• XmDIALOG_OK_BUTTON

• XmDIALOG_SELECTION_LABEL

• XmDIALOG_SEPARATOR

• XmDIALOG_TEXT

• XmDIALOG_WORK_AREA

Child — Returns a long integer array of child widget IDs.

376 Application Developer’s Guide

Class — Returns the widget class for the given widget.

Count=count — Specifies the number of items for resources containing an array
of strings, such as a list or command.

Destroyed — Returns 1 if the given widget is being destroyed; otherwise returns 0.

Managed — Returns 1 if the given widget is managed; returns 0 if the widget is
unmanaged.

MultiClick — Returns the time, in milliseconds, that is used to determine if con-
secutive mouse button clicks are to be interpreted as multiple clicks.

Name — Returns the name of the given widget.

Name=name — Returns the ID of the named widget and its parent.

Ncols — Specifies the number of columns of the two-dimensional resource to be
retrieved. A two-dimensional resource is a resource whose value is a two-dimen-
sional array of strings. Currently, two-dimensional resources are used in the table
widget.

Nrows — Specifies the number of rows of the two-dimensional resource to be
retrieved.

Parent — Returns the widget ID of the parent of the given widget.

Realized — Returns 1 if the given widget is realized (displayed); returns 0 if it is
unrealized.

Sensitive — Returns 1 if the given widget is sensitive; returns 0 if it is not sensitive.

Shell — Returns 1 if the given widget is a shell (top-level widget); returns 0 if it is
not a shell.

Userdata — Returns the user data (any variable or structure) for the given widget
formally stored by the WtSet function.

Value — Returns the value for a scale, scroll bar, or toggle button.

Widget — Returns 1 if the given widget is a widget (not a shell); returns 0 if it is
not a widget.

Window — Returns the window ID of the given widget.

Window=window — Returns the widget ID of the given window.

WtGet Function 377

Discussion

Windows USERS Visual Numerics has ported a subset of the Widget Toolbox
(Wt) functionality that is available for Motif to Microsoft Windows. Because the
Widget Toolbox under Windows is not a complete implementation, we recommend
that Windows developers use the WAVE Widgets (Ww) layer or the VDA Tools
when developing GUI applications.

Windows USERS The WtGet keywords are supported for Windows; however,
the use of the resource parameter to pass resource names is not supported.

Motif developers, see the OSF/Motif Programmer’s Reference for a list of resource
names.

The resource name for a Widget Toolbox widget is derived from the Motif widget
set resource name. Remove the XmN prefix from the Motif resource name. For
example:

The data type of a resource’s value depends on the type of the resource.

Example
window = WtGet(wid, /Window)

; Returns the window ID of the specified widget (wid).

wid = WtGet(wid, Window=win(2))

; Returns the widget ID of window win(2) for the specified
; widget (wid).

widget = WtGet(wid, /Widget)

; Returns 1 if the given widget is not a shell, or 0 if it is a shell.

name = WtGet(wid, /Name)

; Returns the name of the specified widget (wid).

child = WtGet(wid, Child=XmDIALOG_DIR_LIST)

; Returns the ID of the XMDIALOG_DIR_LIST component of the
; FileSelection widget (wid).

Motif PV-WAVE Widget Set

XmNwidth width

XmNx x

378 Application Developer’s Guide

See Also

For more information about how to write an application program based on the PV-
WAVE Widget Toolbox, refer to Chapter 6, Using the Widget Toolbox.

WtInit Function
Initializes the Widget Toolbox and the Xt toolkit, opens the display, and creates the
first top-level shell.

Usage

topshell = WtInit(app_name, appclass_name [, Xserverargs ...])

Parameters

app_name — A string containing the name of the application as used in the
resource file.

appclass_name — A string containing the application class name (name of the
resource file).

Xserverargs — (optional) A string containing X server arguments (font, display,
synchronize, etc.). See the OSF/Motif Programmer’s Reference for more
information.

Returned Value

topshell — Returns the widget ID of the top application shell.

Keywords

Colors — (Motif only) The maximum number of color table indices to be used.
Otherwise, PV-WAVE uses all of the available color indices. On Windows plat-
forms, PV-WAVE uses all available color indices.

ConfirmClose — A string containing the name of the procedure called when the
user selects the Close or Quit menu button from the window manager menu.

Context — Specifies application context handle created in an Xt Intrinsics-based
application statically linked with PV-WAVE. If this keyword is specified, the Top-
shell keyword is also required.

WtInit Function 379

Resource — Specifies a resource file to load into the resource manager database.
The resources are used to set attributes of the top-level shell created by WtInit. The
defaults are as follows:

(UNIX) WAVE_DIR/bin/Wave.ad

(OpenVMS) WAVE_DIR:[BIN]WAVE.AD

(Windows) WAVE_DIR\bin\wave.ad

Where WAVE_DIR is the main PV-WAVE directory.

Topshell — Specifies top-level shell handle of the main application shell created
in an Xt Intrinsics-based application statically linked with PV-WAVE. If this key-
word is specified, the Context keyword is also required.

Windows USERS The Context and Topshell keywords are not supported on
Windows platforms.

UserData — A variable. If the ConfirmClose keyword is specified, the value of this
variable is passed to the Close or Quit callback.

Discussion

Windows USERS Visual Numerics has ported a subset of the Widget Toolbox
(Wt) functionality that is available for Motif to Microsoft Windows. Because the
Widget Toolbox under Windows is not a complete implementation, we recommend
that Windows developers use the WAVE Widgets (Ww) layer or the VDA Tools
when developing GUI applications.

Call this routine before the first use of any Widget Toolbox routines, or to reinitial-
ize Widget Toolbox after closing the top-level shells.

The ConfirmClose keyword lets you control what happens when the user selects
Close or Quit from the window manager menu. Normally, the window from which
the menu item was selected is destroyed; however, you might want to display a con-
firmation dialog box or take another action instead of simply allowing the window
to be destroyed. The callback procedure specified by ConfirmClose destroys the
window when appropriate.

The ConfirmClose procedure you specify accepts two parameters: wid and
user_data, where:

380 Application Developer’s Guide

wid = The widget ID of the top-level shell of the application.

user_data = The variable specified via the User_Data keyword. If
User_Data is not specified, 0 (zero) is passed to the ConfirmClose routine.

If specified, your ConfirmClose routine must close the top-level shell of the appli-
cation. An example of a simple ConfirmClose routine which just closes the shell is:

PRO MyConfirmClose, wid, user_data

s = WwSetValue(wid, /Close)

END

If ConfirmClose is not specified, then the shell is simply closed.

Example

This example creates a Motif button labeled Done. When you select the button, the
widget is destroyed. To run the example, enter the callback and the example proce-
dures in a file and run them with .RUN.

Callback Procedure Example: Motif

PRO CancelHelp, wid, data, npar, reason, event, count

COMMON block, top

status=WtClose(top)

END

Example Procedure

PRO example

COMMON block, top

@wtxmclasses.pro

top=WtInit(’wt_ex3’, ’Examples’)

widget=WtCreate(’Done’, xmPushButtonWidgetClass, top)

status=WtAddCallback(widget, $
 ’activateCallback’, ’CancelHelp’)

status=WtSet(top, /Realize)

WtLoop

END

WtInput Function (Motif Only) 381

See Also

For more information about how to write an application program based on the PV-
WAVE Widget Toolbox, refer to Chapter 6, Using the Widget Toolbox.

WtInput Function (Motif Only)
Registers an input source handler procedure.

Usage

status = WtInput(function [, parameters])

Input Parameters

function:

’Add’ — Add input to the source of events. If this function is specified, provide
the following parameters:

• file_lun — LUN of the input source file (or pipe).

• handler — (optional) A PV-WAVE procedure that is called when input is
available.

• client_data — (optional) User data to be passed to the handler procedure.

’Remove’ — Remove a previously registered input source. If this function is
specified, provide the following parameter:

• input_id — ID of the input source being removed.

Returned Value

For ’Add’:

status — The input source ID, or zero (0) to indicate failure.

For ’Remove’:

status — One (1) indicates success; zero (0) indicates failure.

Keywords

Noparams — If nonzero, calls the input handler procedure with two parameters:
top (the top-level shell of the application), and client_data.

382 Application Developer’s Guide

If the ’Add’ function is specified, the following keywords can be used:

Except — If specified and nonzero, the Xt Intrinsic condition XtInputExceptMask
is used to define the input source.

Read — If specified and nonzero, the Xt Intrinsic condition XtInputReadMask is
used to define the input source (default).

Write — If specified and nonzero, the Xt Intrinsic condition XtInputWriteMask is
used to define the input.

Discussion

NOTE This function is not available for Windows.

While most GUI applications are driven only by events, some applications need to
incorporate other sources of input into the X Toolkit event handling mechanism.
WtInput supports input or output gathering from files. The application registers an
input source handler procedure and a file with the X Toolkit. When input is pending
on the file, the registered handler is invoked.

NOTE In this context a “file” should be loosely interpreted to mean any sink (des-
tination of output) or pipe (source of data).

For information on the requirements for writing input handler procedures, see
Adding Input Handler Procedures (Motif Only) on page 226.

Example

The following application accepts and processes data from another application that
gathers the data.

PRO Server, top, client_data, nparams, id, lun, source

 READU, lun, data

; Process received data here.
END

PRO ButtonCB, wid, index

 COMMON ProcessComm, top, inputid

; Handle buttons here.
 CASE index OF

 1: ; Store

 2: ; Display

WtList Function 383

 3: BEGIN ; Close application

 status = WtInput(’REMOVE’, inputid)

 status = WwSetValue(top, /Close)

 END

 ENDCASE

END

PRO ProcessData

 COMMON ProcessComm, top, inputid

; Spawn data gathering application
 SPAWN, ’getdata’, unit = lun

; Initialize the application.
 top = WwInit(’processdata’,’Test’, layout)

 buttons = WwButtonBox(layout, $

 [’Store’,’Display’,’Close’],’ButtonCB’)

; Register input source handler and start the application.
 inputid = WtInput(’ADD’, lun, ’Server’)

 status = WwSetValue(top, /Display)

 WwLoop

 FREE_LUN, lun

END

See Also

For more information about how to write an application program based on the PV-
WAVE Widget Toolbox, refer to Chapter 6, Using the Widget Toolbox.

WtList Function
Controls the characteristics of scrolling list widgets.

Usage

status = WtList(function, widget [, parameters])

Parameters

function:

• ’Add’ — Add specified item(s) to the list.

384 Application Developer’s Guide

• ’Delete’ — Delete specified item(s) from the list.

• ’DeleteAll’ — Delete all items from the list.

• ’Deselect’ — Deselect specified item(s) in the list.

• ’DeselectAll’ — Deselect all items in the list.

• ’ItemCount’ — Number of items in the list.

• ’Items’ — Get items in the list.

• ’Select’ — Select specified item(s) from the list.

• ’SelectAll’ — Select all items from the list.

• ’SelectedCount’ — Number of selected items.

• ’Selected’ — Get selected items.

• ’Replace’ — Replace specified item(s) in the list.

widget — The list widget ID.

parameters:

• For ’Add’— (p1) A string or array of strings; (p2) a long integer representing
the position at which to add the item. The default is the end position.

• For ’Delete’ — (p1) A string or array of strings.

• For ’Deselect’ — (p1) A string or array of strings.

• For ’ItemCount’ — (p1) Number of items in the list (long, output).

• For ’Items’ — (p1) Items in the list. Array of strings (output).

• For ’Menu’ — (p1) Menu shell ID (long).

• For ’Select’ — (p1) A string or array of strings.

• For ’SelectedCount’ — (p1) Number of selected items (long, output).

• For ’Selected’ — (p1) Selected items. Array of strings (output).

• For ’Replace’— (p1) A string or array of strings; (p2) position of first items
to be replaced.

Keywords

Notify — If specified, a callback is called during Select or Deselect operations.

WtList Function 385

Discussion

Windows USERS Visual Numerics has ported a subset of the Widget Toolbox
(Wt) functionality that is available for Motif to Microsoft Windows. Because the
Widget Toolbox under Windows is not a complete implementation, we recommend
that Windows developers use the WAVE Widgets (Ww) layer or the VDA Tools
when developing GUI applications.

The list utility lets users choose an action from a list of actions. For detailed infor-
mation on the list utility, see the description of XmList in the OSF/Motif
Programmer’s Reference.

Example
.

.

items = [’Presidents Day’,’St.Patricks Day’, $
’Easter’, ’Memorial Day’, ’4th of July’, $
’Labor Day’, ’Halloween’, ’Thanksgiving’, $
’Hanukkah’, ’Christmas’, ’New Years Eve’]

status = WtList("Add", datelist, items)

.

.

See Also

For more information about how to write an application program based on the PV-
WAVE Widget Toolbox, refer to Chapter 6, Using the Widget Toolbox.

386 Application Developer’s Guide

WtLookupString Function
Maps a KeyPress or KeyRelease event to its KeyEvent structure (and optionally, to
its Keysym) when a user presses a key.

Usage

string = WtLookupString(event)

Input Parameters

event — A KeyEvent structure associated with the KeyPress event. The KeyEvent
structure is passed to the callback procedure.

Returned Value

string — A string containing the name of the key which was pressed. A null string
is returned for the <Shift>, <Ctrl>, <Alt>, and function keys.

Keywords

Keysym — Returns a value associated with the key pressed.

UNIX USERS For Motif, Keysym returns a long value (XKeysym) associated
with the key pressed. Keysym is an integer value unique to a particular key on the
keyboard. This value can be used to identify function key presses.

Windows USERS For Windows, Keysym returns the long value of the virtual
key associated with the key pressed (the result of the VkKeyScan procedure). For
a list of virtual key codes and the keys to which they map, see Appendix E, Virtual
Keys or refer to the Win32 Programmer’s Reference.

Discussion

Windows USERS Visual Numerics has ported a subset of the Widget Toolbox
(Wt) functionality that is available for Motif to Microsoft Windows. Because the
Widget Toolbox under Windows is not a complete implementation, we recommend
that Windows developers use the WAVE Widgets (Ww) layer or the VDA Tools
when developing GUI applications.

WtLoop Procedure 387

WtLookupString is used in the callback of a KeyPress or KeyRelease event to map
the event into the string it represents. The call is used specifically to handle null
strings, which are returned whenever an unprintable character (such as <Shift>,
or a function key) is pressed.

The Keysym keyword is used in situations where the pressed key must be identified.
The include file <X11/keysymdef.h> contains a complete Keysym listing.

Examples

The following example illustrates the use of WtLookupString to obtain the string
name associated with a KeyPress event.

string = WtLookupString(event)

The following usage of WtLookupString returns the string associated with the
event as well as the Keysym associated with the key pressed.

string = WtLookupString(event, keysym=ks)

See Also

WtAddHandler

For more information about how to write an application program based on WAVE
Widgets, refer to Chapter 5, Using WAVE Widgets.

For detailed information on Keysyms, see Appendix H, “Keysyms,” of the Xlib
Reference Manual (Vol. 2) for Version 11 (O’Reilly & Associates, 1988).

WtLoop Procedure
Handles the dispatching of events and calling of callback routines.

Usage

WtLoop

Parameters

None.

388 Application Developer’s Guide

Returned Value

None.

Keywords

Noblock — If specified and nonzero, events are dispatched in the background, and
WtLoop returns immediately to process PV-WAVE commands from the command
line.

Discussion

WtLoop causes PV-WAVE to loop indefinitely, processing the events and dispatch-
ing callbacks, handlers, and timers.

Windows USERS Visual Numerics has ported a subset of the Widget Toolbox
(Wt) functionality that is available for Motif to Microsoft Windows. Because the
Widget Toolbox under Windows is not a complete implementation, we recommend
that Windows developers use the WAVE Widgets (Ww) layer or the VDA Tools
when developing GUI applications.

NOTE For interapplication development using cwavec() or cwavefor(), the
default behavior of WwLoop is to block, even if the Noblock keyword is set. To
force nonblocking, set Noblock = 2 and then call WtProcessEvent periodically
to service the event loop.

Motif Example

This example creates a Motif button labeled Done.

PRO example

COMMON block, top

@wtxmclasses.pro

top=WtInit(’wt_ex4’, ’Examples’)

widget=WtCreate(’Done’, xmPushButtonWidgetClass, top)

status=WtAddCallback(widget, ’activateCallback’, ’CancelHelp’)

status=WtSet(top, /Realize)

WtLoop

END

WtMainLoop Function 389

WtMainLoop Function
Handles the dispatching of events.

Usage

status = WtMainLoop()

Input Parameters

None.

Output Parameters

None.

Returned Value

status — One (1) indicates success; zero (0) indicates failure.

Keywords

Noblock — If specified and nonzero, events are dispatched in the background, and
WtMainLoop returns immediately to process PV-WAVE commands from the
command line.

Discussion

Windows USERS Visual Numerics has ported a subset of the Widget Toolbox
(Wt) functionality that is available for Motif to Microsoft Windows. Because the
Widget Toolbox under Windows is not a complete implementation, we recommend
that Windows developers use the WAVE Widgets (Ww) layer or the VDA Tools
when developing GUI applications.

The WtLoop function can be called to accomplish the same result as WtMainLoop.
WtMainLoop has been retained to provide upward compatibility with an earlier
release of PV-WAVE, but it is recommended that you use WtLoop, instead.

390 Application Developer’s Guide

See Also

WtLoop

For more information about how to write an application program based on the PV-
WAVE Widget Toolbox, refer to Chapter 6, Using the Widget Toolbox.

WtPointer Function
The pointer utility function.

Usage

status = WtPointer(function, widget [, parameters])

Parameters

function:

• ’GetLocation’ — Get the current location of the pointer.

• ’GetControl’ — (Motif only) Get the control attributes of the pointer.

• ’GetMapping’ — (Motif only) Get the current mapping of the pointer.

• ’SetLocation’ — (Motif only) Set the location of the pointer.

• ’SetControl’ — (Motif only) Set the control attributes of the pointer.

• ’SetMapping’ — (Motif only) Set the mapping of the pointer.

widget — The current widget.

parameters:

• ’GetLocation’ — A seven-element array of long integers:

0 Root window

1 Child window where the pointer is located

2 X coordinate in root

3 Y coordinate in root

4 X coordinate in current window

5 Y coordinate in current window

WtPointer Function 391

• ’GetControl’ — A three-element array of long integers:

• ’GetMapping’ — An array of up to ten long integers:

• ’SetLocation’ — A two element array of long integers:

• ’SetControl’ — A three-element array of long integers:

• ’SetMapping’ — An array of up to ten long integers:

Returned Value

status — One (1) indicates success; zero (0) indicates failure.

6 Modifier keys and buttons state mask

0 accel_numerator

1 accel_denominator

2 threshold

0–9 Pointer button mapping

0 X coordinate in current window

1 Y coordinate in current window

0 accel_numerator

1 accel_denominator

2 threshold

0–9 Pointer button mapping

392 Application Developer’s Guide

Discussion

Windows USERS Visual Numerics has ported a subset of the Widget Toolbox
(Wt) functionality that is available for Motif to Microsoft Windows. Because the
Widget Toolbox under Windows is not a complete implementation, we recommend
that Windows developers use the WAVE Widgets (Ww) layer or the VDA Tools
when developing GUI applications.

See the Xlib Reference Manual (O’Reilly & Associates, Inc., 1989) for details on
XQueryPointer, XGetPointerControl, XGetPointerMapping, XWarpPointer,
XChangePointerControl, and XSetPointerMapping.

Example
.

.

status=WtPointer("GetLocation", wid, state)

.

.

See Also

For more information about how to write an application program based on the PV-
WAVE Widget Toolbox, refer to Chapter 6, Using the Widget Toolbox.

WtPreview Function
Handles utility functions for the preview widget (XvnPreview).

Usage

status = WtPreview(action, widget)

Input Parameters

action — A string containing one of the following actions:

AutoDefine — Automatically define the data area.

ClearArea — Clear the given data area. If this action is specified, you must also
provide the following input parameters:

WtPreview Function 393

type — The type of object to commit.

count — The number of areas to clear.

areas — The selected areas to clear.

ClearAll — Clear all of the selected areas.

CommitArea — Commit the selection of the given area. If this action is speci-
fied, you must also provide the following input parameters:

type — The type of object to commit.

count — The number of areas to commit.

areas — The selected areas to commit.

SelectArea — Select the given area. If this action is specified, you must also
provide the following input parameters:

type — The type of object to select.

area — The area to select.

widget — The widget ID of the Preview widget (XvnPreview).

Discussion

Windows USERS Visual Numerics has ported a subset of the Widget Toolbox
(Wt) functionality that is available for Motif to Microsoft Windows. Because the
Widget Toolbox under Windows is not a complete implementation, we recommend
that Windows developers use the WAVE Widgets (Ww) layer or the VDA Tools
when developing GUI applications.

XvnPreview is a widget class that allows you to preview column-oriented ASCII
data. WtPreview allows the PV-WAVE application programmer to interact with,
and modify the preview widget. Specifically, WtPreview facilitates the selection
and clearing of areas in a data file being displayed by the preview widget.

NOTE See WwPreview Procedure on page 315 for more detailed information on
the preview widget and an example preview window application.

394 Application Developer’s Guide

XvnPreview Widget Documentation

The XvnPreview widget class was developed by Visual Numerics, Inc.

Complete documentation for the XvnPreview widget, including information on the
widget’s resources and callbacks, is available in the PostScript file
preview_motif.ps, which you can print on any PostScript printer. This file is
in:

(UNIX) WAVE_DIR/docs/widgets

(OpenVMS) WAVE_DIR:[DOCS.WIDGETS]

(Windows) WAVE_DIR\docs\widgets

Where WAVE_DIR is the main PV-WAVE directory.

See also Appendix B, Motif Callback Parameters for information on the required
parameters for all widget callbacks.

Example

See the example for WwPreview.

See Also

WwPreview, WzPreview (in the PV-WAVE Reference)

For more information about how to write an application program based on the PV-
WAVE Widget Toolbox, refer to Chapter 6, Using the Widget Toolbox.

WtProcessEvent Function
Handles the dispatching of a Widget Toolbox event.

Usage

status = WtProcessEvent()

Input Parameters

None.

WtProcessEvent Function 395

Returned Value

status — A value indicating the success or failure of the processed event as
follows:

Keywords

Drain — Causes all pending events to be flushed.

Discussion

Windows USERS Visual Numerics has ported a subset of the Widget Toolbox
(Wt) functionality that is available for Motif to Microsoft Windows. Because the
Widget Toolbox under Windows is not a complete implementation, we recommend
that Windows developers use the WAVE Widgets (Ww) layer or the VDA Tools
when developing GUI applications.

WtProcessEvent processes one Widget Toolbox event. Use this function to process
Widget Toolbox events in the user-customized event loop, or to temporarily halt the
execution of the PV-WAVE program while still processing Widget Toolbox events.

WtProcessEvent normally processes a single event. If there are no pending events,
then it will wait (block) for the next event. If you use the Drain keyword, then
WtProcessEvent will process all pending events and then return. If no events are
pending, it returns immediately, without blocking.

Example

WtProcessEvent is used in the source code for the WwAlert function to process
events until the user presses a button, or until the event processing fails. The source
code for WwAlert is in:

(UNIX) WAVE_DIR/lib/std/motif/wwalert.pro

(OpenVMS) WAVE_DIR:[LIB.STD.MOTIF]WWALERT.PRO

(Windows) WAVE_DIR\lib\std\windows\wwalert.pro

1 Indicates the event loop is stopped.

0 Indicates the event was processed.

–1 Indicates the keyboard was received.

396 Application Developer’s Guide

Where WAVE_DIR is the main PV-WAVE directory.

See Also

For more information about how to write an application program based on WAVE
Widgets, refer to Chapter 5, Using WAVE Widgets.

WtResource Function
Queries, creates, saves, or modifies the widget resource database.

Usage

value = WtResource([resvar])

Input Parameters

resvar — (optional) A string containing a resource variable specification in the
resource database.

Returned Value

value — The returned value depends on the input parameter and/or the use of key-
words as shown in the following table.

Value Returned Parameter or Keyword Used

A string containing the value asso-
ciated with resvar; a null string, if
resvar isn’t found; or the default
value specified.

resvar, or
resvar with Default keyword

An integer value of 1 indicating
success, or 0 indicating failure.

Add, Load, or
Save keywords

A string containing the resource
specification a widget.

Spec keyword

WtResource Function 397

Keywords

Add — A string containing a name: value resource specification to merge into the
resource database in the current session. If the resource specification already exists
in the application, the Add keyword takes precedence.

Default — (Used only if resvar is specified.) A string specifying a default value for
the resource variable in resvar. If resvar doesn’t match anything in the resource
database, this default value is returned.

Load — A string specifying the pathname of a resource file to be merged with the
existing resource database. If the resource file was specified in the application, the
use of the Load keyword takes precedence.

Save — A string specifying the pathname of the resource file in which to save the
currently defined resources in the resource database. If the file specified already
exists, the contents will be overwritten.

Spec — Used to specify a widget ID. The resource variable specification of the
widget is returned.

Discussion

Windows USERS Visual Numerics has ported a subset of the Widget Toolbox
(Wt) functionality that is available for Motif to Microsoft Windows. Because the
Widget Toolbox under Windows is not a complete implementation, we recommend
that Windows developers use the WAVE Widgets (Ww) layer or the VDA Tools
when developing GUI applications.

WtResource gives direct access to the widget resource database from WAVE Wid-
gets and Widget Toolbox applications. Resources loaded or added using
WtResource are used from then on by all subsequently created WAVE Widgets.
The resource specifications merged into the resource database using either the
Load or Add keywords supercede existing definitions.

Examples

The following example shows how a resource specification added during a session
takes precedence over the existing definition.

myapp*background: red

; The existing resource specification in the database.

value = WtResource(ADD=’myapp*background: blue’)

398 Application Developer’s Guide

; The Add keyword changes the color to blue instead. For the rest of the
; session, or until it is redefined, the background color will be blue.

In the next example, the syntax for using the Load keyword is illustrated.

value = WtResource(LOAD=’/usr/mydir/myapp/myapp.ad’)

; This merges the resources found in the specified file with the
; existing resource database.

This example shows how to request a value associated with a resource name.

value = WtResource(’myapp*mybutton.label’, Default=’my label’)

; This usage returns the value associated with the resource variable
; specified. The Default keyword is used to return the value ‘my label’, if
; the named resource doesn’t exist.

An example for writing all defined resources to a file is:

value = WtResource(SAVE=’/usr/mydir/myapp/myapp.newad’)

To request the resource variable specification of a particular widget identified by
its associated widget ID, use:

value = WtResource(SPEC=widget_id)

See Also

WwResource

For more information about how to write an application program based on WAVE
Widgets, refer to Chapter 5, Using WAVE Widgets.

WtSet Function
Sets widget resources.

Usage

status = WtSet(widget, [argv])

Parameters

widget — The widget ID.

argv — (optional) An unnamed structure specifying the resources for the widget
or shell.

WtSet Function 399

Returned Value

status — One (1) indicates success; zero (0) indicates failure.

Keywords

Append=com — Appends a command to the command widget.

Callback=reason — Calls all defined callbacks for the specified reason for this
widget.

Destroy — Destroys the widget and all children of the widget.

Error=errmsg — Displays an error message in the history area of the command
widget.

Manage — Manages the given widget (WtCreate manages widgets by default).

Map — Maps the given widget.

MultiClick — Sets the time interval (in milliseconds) that is used to determine if
consecutive mouse button clicks are to be interpreted as multiple clicks.

Nonsensitive — Sets the given widget to nonsensitive.

Popup=event — Pops up the given menu (event specifies the location).

Raise — If present and nonzero, pops the given widget in front of other windows
displayed on the monitor.

Realize — Realizes (displays) the given widget.

Realize=grab — Realizes the given shell with one of these grab values:

 Xtgrabnone

 Xtgrabnonexclusive

 Xtgrabexclusive

Remove_callback = name — If the name of a callback routine is specified, this
keyword removes the named callback. If name is not specified, all callbacks for the
specified widget are removed.

Remove_handler = name — If the name of an event handler is specified, this key-
word removes the named event handler. If name is not specified, all event handlers
for the specified widget are removed.

Search=dir — (Motif only) Sets the search context for a file selection widget.

Sensitive — Sets the given widget to sensitive.

400 Application Developer’s Guide

Unmanage — Unmanages the given widget.

Unmap — Unmaps the given widget.

Unrealize — If present and nonzero, unrealizes a widget, or pops down (undis-
plays) a shell.

Update — If present and nonzero, all pending exposure (i.e., window repair) events
are processed immediately. If you suspect that a callback procedure will take a long
time, use this keyword to update the display before starting the time consuming
operation.

Userdata — Stores a copy of the value of a variable.

Value=value — Sets the value for a command, scale, scroll bar, or toggle button.

Whenmapped — Sets mapped to true for managed attributes.

Whenunmapped — Sets mapped to false for managed attributes.

Discussion

Windows USERS Visual Numerics has ported a subset of the Widget Toolbox
(Wt) functionality that is available for Motif to Microsoft Windows. Because the
Widget Toolbox under Windows is not a complete implementation, we recommend
that Windows developers use the WAVE Widgets (Ww) layer or the VDA Tools
when developing GUI applications.

Windows USERS The WtSet keywords are supported for
Windows; however, the use of the argv parameter to pass resource-value pairs is
not supported.

Resources are passed as an unnamed structure, where tag names correspond to
resource names and tag definitions are resource values. Resource names are given
without the XmN (Motif) prefix.

An unnamed structure has the following general definition:

x = {, tag_name1: tag_def1, tag_namen: tag_defn}

See the PV-WAVE Programmer’s Guide for detailed information on unnamed
structures.

For a list of resources for the specified widget or shell, see the appropriate OSF/
Motif Programmer’s Reference.

WtTable Function 401

NOTE If the color, font, or bitmap (called a “pixmap” in Motif) resource value is
of type string, it is assumed to be the value of the color/font name or bitmap file-
name, and the appropriate resources are loaded.

Example
.

.

.

args={,x:100,y:100,label:’Enter File:’,$
string:’/usr/home/myfile.pro’}

; Resources are defined in an unnamed structure.
status=WtSet(w,args)

.

.

status=WtSet(top,/Realize)

.

.

See Also

For more information about how to write an application program based on the PV-
WAVE Widget Toolbox, refer to Chapter 6, Using the Widget Toolbox.

WtTable Function
Modifies an XbaeMatrix class widget.

Usage

status = WtTable(function, widget [, parameters])

Input Parameters

function:

’AddColumns’ — Add columns to the table. If this function is specified, also
provide the following parameters:

402 Application Developer’s Guide

position — The column before which new columns are added.

columns — Two-dimensional string array of column values.

num_columns — Number of columns to be added.

width — One-dimensional array of column widths.

labels — (optional) One-dimensional array of column labels.

max_lengths — (optional) One-dimensional array of column maximum
lengths.

alignments — (optional) One-dimensional array of column alignments.
Valid values are:

label_alignments — (optional) One-dimensional array of column label
alignments. Valid values are:

colors — (optional) Two-dimensional array of column cell colors.

’AddRows’ — Add rows to the table. If this function is specified, also provide
the following parameters:

position — The row before which new rows are added.

rows — Two-dimensional string array of row values.

num_rows — Number of rows to be added.

labels — (optional) One-dimensional array of row labels.

colors — (optional) Two-dimensional array of row cell colors.

0 Align cell contents to cell’s left edge (left justify).

1 Center cell contents (center justify).

2 Align cell contents to cell’s right edge (right justify).

0 Align cell contents to cell’s left edge (left justify).

1 Center cell contents (center justify).

2 Align cell contents to cell’s right edge (right justify).

WtTable Function 403

’DeleteCols’ — Delete columns from the table. If this function is specified,
also provide the following parameter:

position — The column at which to start deleting columns.

num_columns — Number of columns to delete.

’DeleteRows’ — Delete rows from the table. If this function is specified, also
provide the following parameter:

position — The row at which to start deleting rows.

num_rows — Number of rows to delete.

’DeselectAll’ — Deselect all cells in the table.

’DeselectCell’ — Deselect the specified cell in the table. If this function is
specified, also provide the following parameter:

row — Row index of the cell to deselect.

column — Column index of the cell to deselect.

’DeselectCol’ — Deselect the specified column in the table. If this function
is specified, also provide the following parameter:

column — Index of column to deselect.

’DeselectRow’ — Deselect the specified row in the table. If this function is
specified, also provide the following parameter:

row — Index of row to deselect.

’SelectCell’ — Select the specified cell in the table. If this function is spec-
ified, also provide the following parameters:

row — Row of the cell to select.

column — Column of the cell to select.

’SelectCol’— Select the specified column in the table. If this function is spec-
ified, also provide the following parameter:

column — Column to select.

’SelectRow’ — Select the specified row in the table. If this function is speci-
fied, also provide the following parameter:

row — Row to deselect.

404 Application Developer’s Guide

’EditCell’ — Edit the specified cell in the table. If this function is specified,
also provide the following parameters:

row — Row of the cell to edit.

column — Column of the cell to edit.

’CancelEdit’ — Cancel the edit of the currently edited cell. If this function
is specified, also provide the following parameter:

unmap — (optional) If specified and nonzero, the currently edited cell is
unmapped.

’CommitEdit’ — Commit the edit of the currently edited cell. If this function
is specified, also provide the following parameter:

unmap — (optional) If specified and nonzero, the currently edited cell is
unmapped.

’GetCell’ — Get the value of a cell in the table. If this function is specified,
also provide the following parameters:

row — Row of the cell to get.

column — Column of the cell to get. Returns the value of the specified cell.

’SetCell’ — Set the value of a cell in the table. If this function is specified,
also provide the following parameters:

row — Row of the cell to set.

column — Column of the cell to set.

value — New value of the specified cell.

’SetColor’ — Set the color value for a cell in the table. If this function is spec-
ified, also provide the following parameters:

row — Row of the cell whose color you want to set.

column — Column of the cell whose color you want to set.

color — New colormap index of the specified cell.

’SetColColor’ — Set the color value for a column in the table. If this function
is specified, also provide the following parameters:

position — Column at which to start setting colors.

colors — Two-dimensional array of new colormap indexes for columns.

WtTable Function 405

num_colors — The number of elements in the colors array.

’SetRowColor’ — Set the color value for a row in the table. If the
’SetRowColor’ function is specified, also provide the following parameters:

position — Row at which to start setting colors.

colors — 2D array of new colortable indexes for rows.

num_colors — The number of colors in the colors array.

widget — Widget ID of the table (xbaeMatrix class) widget.

Discussion

Windows USERS Visual Numerics has ported a subset of the Widget Toolbox
(Wt) functionality that is available for Motif to Microsoft Windows. Because the
Widget Toolbox under Windows is not a complete implementation, we recommend
that Windows developers use the WAVE Widgets (Ww) layer or the VDA Tools
when developing GUI applications.

The XbaeMatrix widget creates an editable 2D array of string data (cells) similar
to a spreadsheet. All values must be converted to string type before being set with
WtTable.

XbaeMatrix Widget Documentation

The Motif version of the XbaeMatrix widget was originally developed by Andrew
Wason of Bellcore.

Complete documentation for the XbaeMatrix widget is available in the PostScript
file matrix_motif.ps, which you can print on any PostScript printer. This file
is in:

(UNIX) WAVE_DIR/docs/widgets

(OpenVMS) WAVE_DIR:[DOCS.WIDGETS]

(Windows) WAVE_DIR\docs\widgets

Where WAVE_DIR is the main PV-WAVE directory.

Refer to this document for detailed information on the MbaeMatrix widget’s
resources and callbacks.

406 Application Developer’s Guide

XbaeMatrix Widget Callbacks

See Appendix B, Motif Callback Parameters for information on the required
parameters for all widget callbacks. The XbaeMatrix widget’s callback routines
and their parameters are documented in the file matrix_motif.ps and dis-
cussed in the previous section. Refer to that document for information on the table
widget’s callbacks.

Example

Values in the table are modified (set) through a call to WtTable.

Figure 8-1 Editable table based on the XbaeMatrix widget.

PRO ButtonCB, w, which

 COMMON Widgets, table

; When a button is pressed, modify the table with a call to WtTable.
CASE which OF

 1: PRINT, WtGet(table,’cells’,Nrows = 2, Ncols = 3)

 2: status = WtTable(’SetCell’, table, 0, 0, ’New Font’)

 ENDCASE

END

PRO LeaveCellCB, w, data, n, reason, event,$
r, c, value, doit

; This callback is called just before an edit to a cell is
; committed. For more information on XbaeMatrix widget
; callbacks and their parameters, see the previous section
; “XbaeMatrix Widget Callbacks”.

 PRINT, "leaveCellCallback ", r, c, value

END

WtTable Function 407

PRO ModifyVerifyCB, w, data, n,reason, event,$
r, c, doit, ci, cn, sp, ep, txt, len, fmt

; This callback is called while a cell is being edited. For more
; information on XbaeMatrix widget callbacks and their
; parameters, see the previous section “XbaeMatrix
; Widget Callbacks”.

 print, "modifyVerifyCallback ", r, c, doit,$
 ci, cn, sp, ep, txt, len, fmt

END

PRO Table

 @wtxmclasses

 @wtxmconsts

 COMMON Widgets, table

; Initialize the Widgets Toolkit.
 top = WwInit(’table’,’Test’, layout, /Vertical)

; Load color table.
 loadct, 5

; Set cell contents, display table.
 cells = [[’Fonts’,’Size’,’Icons’], $

 [’1.245’,’2.5’,’3.6’]]

 args = {, rows:2, columns:3, cells:cells,$
 columnWidths:[10, 10, 10], $
 columnLabels:[’col1’,’col2’,’col3’],$
 rowLabels:[’row1’,’row2’], boldLabels:TRUE, $
 colors:[[40, 50, 60], [100, 110, 120]], $

 columnAlignments:[XmALIGNMENT_BEGINNING, $
 XmALIGNMENT_CENTER, XmALIGNMENT_END]}

 table = WtCreate(’table’, xbaeMatrixWidgetClass, $
layout, args)

 status = WtAddCallback(table, $
 "leaveCellCallback", ’leaveCellCB’)

 status = WtAddCallback(table, "modifyVerifyCallback",$
 ’modifyVerifyCB’)

 buttons = WwButtonBox(lay out, [’Get’,’Set’], ’ButtonCB’)

 status = WwSetValue(top, /Display)

 WwLoop

END

See Also

WwTable

408 Application Developer’s Guide

For more information about how to write an application program based on the PV-
WAVE Widget Toolbox, refer to Chapter 6, Using the Widget Toolbox.

WtTimer Function
Registers a callback function for a given timer.

Usage

status = WtTimer(function, params, [client_data])

Parameters

function:

• 'Add' — If Add is specified, also provide the following three parameters:

time — A long integer specifying the time interval in milliseconds.

timer — A string containing a timer function name.

client_data — (optional) A variable.

• 'Remove' — If Remove is specified, also provide the following parameter:

id — The timer ID.

Returned Value

For ’Add’:

status — The input source ID, or zero (0) to indicate failure.

For ’Remove’:

status — One (1) indicates success; zero (0) indicates failure.

Keywords

Noparams — If nonzero, calls the timer with two parameters: wid (the top-level
widget name), and client_data.

Once_only — If present and nonzero, the timer function is called only once.

WtTimer Function 409

Discussion

Windows USERS Visual Numerics has ported a subset of the Widget Toolbox
(Wt) functionality that is available for Motif to Microsoft Windows. Because the
Widget Toolbox under Windows is not a complete implementation, we recommend
that Windows developers use the WAVE Widgets (Ww) layer or the VDA Tools
when developing GUI applications.

This timer, unlike the XtIntrinsics XtTimeOut function, restarts itself. To stop the
timer, use the command:

WtTimer("REMOVE", id)

in the timer callback. The new timer ID is returned in the timer callback parameter
timer_id.

If you need to keep a copy of the timer ID in a common block, copy the timer_id
parameter of the timer callback routine to your timer ID variable in the COMMON
block, as shown in the following example.

For information on the requirements for writing timer procedures, see Using the
Widget Toolbox on page 217.

Example
COMMON timer, tid

.

.

id=WtTimer("ADD", 100, ’TimerCallback’, my_data)

PRO TimerCallback, wid, client_data, nparams, timer_id, interval

COMMON timer, tid

tid = timer_id

.

.

END

See Also

For more information about how to write an application program based on the PV-
WAVE Widget Toolbox, refer to Chapter 6, Using the Widget Toolbox.

410 Application Developer’s Guide

WtWorkProc Function
Registers a work procedure for background processing.

Usage

status = WtWorkProc(function, parameters)

Parameters

function:

• ’Add’ — Registers the specified work procedure.

• ’Remove’ — Removes the previously registered work procedure.

parameters:

• If ’Add’ is specified, also provide these two parameters:

workproc — A work procedure name (string).

client_data — (optional) A variable.

• If ’Remove’ is specified, also provide the following parameter:

id — The ID of the work procedure to be removed.

Returned Value

For ’Add’:

status — The work procedure ID; zero (0) indicates failure.

For ’Remove’:

status — One (1) indicates success; zero (0) indicates failure.

Keywords

Noparams — If nonzero, calls the work procedure with two parameters: wid (the
top-level shell of the application), and client_data.

Once_only — If nonzero, calls the work procedure one time only.

WtWorkProc Function 411

Discussion

Windows USERS Visual Numerics has ported a subset of the Widget Toolbox
(Wt) functionality that is available for Motif to Microsoft Windows. Because the
Widget Toolbox under Windows is not a complete implementation, we recommend
that Windows developers use the WAVE Widgets (Ww) layer or the VDA Tools
when developing GUI applications.

WtWorkProc is modeled after functionality available in the X Windows Intrinsics
library with XtAddWorkProc and XtRemoveWorkProc. When a work procedure is
added, it is executed in its entirety unless a REMOVE call to WtWorkProc is issued
before the procedure has been called. If the work procedure does a large amount of
processing it could block the widget interface until it has finished running.

A typical implementation using WtWorkProc to perform a large amount of back-
ground processing is to break down the processing into a number of discrete steps
and execute the steps one at a time in a work procedure which issues another ADD
call to WtWorkProc to start the next step. Repeat this process until all the steps have
been completed.

For information on the requirements for writing work procedures, see Adding Work
Procedures on page 226.

Example
PRO ButtonCB

; This callback is called when a button is selected. Do not initiate the selected ;
; operation here, because it is too time-consuming. Instead, schedule a work procedure.

 id=WtWorkProc("ADD", ’MyWorkProc’, my_data)

 .

 .

END

PRO MyWorkProc, wid, client_data, workproc_id

 .

 .

 IF done THEN status = WtWorkProc("REMOVE", workproc_id)

END

See Also

For more information about how to write an application program based on the PV-
WAVE Widget Toolbox, refer to Chapter 6, Using the Widget Toolbox.

412 Application Developer’s Guide

413

CHAPTER

9

VDA Tools Manager API (Tm)
This chapter describes the new VDA Tools Manager API routines. These functions
allow VDA Tools to communicate with the central VDA Tools core.

TmAddSelectedVars Procedure
Adds selected variables from a VDA Tool to the list of selected variables in the
Tools Manager.

Usage

TmAddSelectedVars, tool_name, var_name

Parameters

tool_name — A string containing the unique name of a VDA Tool.

var_name — A string containing the name of a variable from the VDA Tool to add
to the selected variables list.

Keywords

None.

414 Application Developer’s Guide

Discussion

The Tools Manager maintains a list of variables that have been selected in a VDA
Tool. The selected variables list enables variables to be exchanged between VDA
Tools. This routine is called by the Export Variables dialog box and the data selec-
tion function found in VDA Tools.

Example

This example demonstrates how variables from a VDA Tool are added to the vari-
able selection list, exported to another VDA Tool, and deleted from the variable
selection list.

PRINT, TmEnumerateSelectedVars()

; No variables are currently on the variable selection list.

PRINT, TmEnumerateVars(’WzPlot_0’)
HAN

; The variable HAN is currently displayed in the VDA Tool WzPlot_0.

TmAddSelectedVars, ’WzPlot_0’, ’HAN’

; Add the variable HAN in the VDA Tool WzPlot to the selected variables list.

PRINT, TmEnumerateSelectedVars()
HAN

; Enumerate the variables that are on the selected variables list.

TmExportSelection, [’WzPlot_2’]

; Export the variable on the selection list to another active VDA Tool.

TmDeselectVars

; Remove all variables from the variable selection list.

See Also

TmDeselectVars, TmEnumerateSelectedVars, TmExport,
TmExportSelection

TmAddVar Procedure 415

TmAddVar Procedure
Adds a variable to a VDA Tool.

Usage

TmAddVar, tool_name, var_name

Parameters

tool_name — A string containing the unique name of a VDA Tool.

var_name — The name of a variable to add to the VDA Tool.

Keywords

None.

Discussion

This function registers a variable with the Tools Manager and associates the vari-
able with a specific VDA Tool instance.

VDA Tools can use the UPVAR, INFO, and TmGetVarMainName functions to get
the names of variables at the $MAIN$ program level.

Example

The following calls can be used to retrieve the name of a variable that was passed
to the VDA Tool and then add that variable to the Tools Manager.

INFO, var

A INT = Array(100)

B FLOAT = Array(30)

TmAddVar, ’WzPlot_0’, ’A’

PRINT, TmEnumerateVars(’WzPlot_0’)

See Also

INFO (in the PV-WAVE Reference), UPVAR (in the PV-WAVE Reference),
TmDelVar, TmEnumerateVars, TmGetVarMainName

416 Application Developer’s Guide

TmCodeGen Procedure
Writes a specified string to the code generation file.

Usage

TmCodeGen, string

Parameters

string — A string to write into the code generation file.

Keywords

None.

Discussion

The code generation functions allow a VDA Tool user to write the PV-WAVE code
used to create a plot, import data, or any other VDA Tool action.

This procedure is used in the TM_CODEGEN method to write strings containing
PV-WAVE code to a file. The TmStartCodeGen command opens the file, and the
TmEndCodeGen closes the file when writing is completed. The TM_CODEGEN
method is called by default from the File=>Code Generation menu item.

Example

For an example of how the code generation functions are used, look at the source
file for the WzPlot VDA Tool. In that file, study the procedure WzPlotCodeGen to
learn how TmCodeGen is used to write PV-WAVE code to a file. The source file
for WzPlot is in:

(UNIX) <wavedir>/lib/vdatools/wzplot.pro

(OpenVMS) <wavedir>:[LIB.VDATOOLS]WZPLOT.PRO

(Windows) <wavedir>\lib\vdatools\wzplot.pro

Where <wavedir> is the main PV-WAVE directory.

See Also

TmEndCodeGen, TmStartCodeGen

TmCopy Procedure 417

TmCopy Procedure
Copies the selected graphical elements from the specified VDA Tool to the
clipboard.

Usage

TmCopy, tool_name

Parameters

tool_name — A string containing the unique name of a VDA Tool containing the
graphical element that is being copied.

Keywords

None.

Discussion

The TmAddSelectedGrael function is used to add graphical elements to a selection
list maintained by the Tools Manager. Once on the selection list, graphical elements
can be copied, pasted, cut, or deleted. TmCopy copies the graphical element or ele-
ments on the current selection list to the clipboard (a temporary buffer).

The tool_name parameter for TmCopy must be the same as the tool name specified
in the TmDelSelectedGraels function.

TmCopy is called by the Edit=>Copy function and by the Copy button on the But-
ton Bar.

Example

The following commands obtain the names of the graphical elements registered for
a VDA Tool, add one of the graphical elements to the selection list, then copy and
paste the graphical element (a rectangle).

PRINT, TmEnumerateGraels(’WzPlot_0’)

TM_WINDOWID TM RECTANGLE LINE AXIS LEGEND TEXT MENUBAR
BUTTONBAR MESSAGE XX TM_HELP AXIS_0 AXIS_1 TM_DRAWING
RECTANGLE_0 LINE_1 GROUP_0

TmAddSelectedGrael, ’WzPlot_0’, ’RECTANGLE_0’

418 Application Developer’s Guide

PRINT, TmEnumerateSelectedGraels(’WzPlot_0’)
RECTANGLE_0

TmCopy, ’WzPlot_0’

TmPaste, ’WzPlot_0’

See Also

TmCut, TmDelete, TmPaste

TmCut Procedure
Cuts the selected graphical elements from the specified VDA Tool and moves them
to the clipboard.

Usage

TmCut, tool_name

Parameters

tool_name — A string containing the unique name of a VDA Tool containing the
graphical element that is being cut.

Keywords

None.

Discussion

The TmAddSelectedGrael function is used to add graphical elements to a selection
list maintained by the Tools Manager. Once on the selection list, graphical elements
can be copied, pasted, cut, or deleted. TmCut cuts the graphical element or ele-
ments on the current selection list and moves them to the clipboard (a temporary
buffer).

The tool_name parameter for TmCut must be the same as the tool name specified
in the TmAddSelectedGrael function.

TmCut is called by the Edit=>Cut function and by the Cut button on the Button
Bar.

TmDelVar Procedure 419

Example

The following commands obtain the names of the graphical elements registered for
a VDA Tool, add one of the graphical elements to the selection list, then cut graph-
ical element (a rectangle).

PRINT, TmEnumerateGraels(’WzPlot_0’)

TM_WINDOWID TM RECTANGLE LINE AXIS LEGEND TEXT MENUBAR
BUTTONBAR MESSAGE XX TM_HELP AXIS_0 AXIS_1 TM_DRAWING
RECTANGLE_0 LINE_1 GROUP_0

TmAddSelectedGrael, ’WzPlot_0’, ’RECTANGLE_0’

PRINT, TmEnumerateSelectedGraels(’WzPlot_0’)
RECTANGLE_0

TmCut, ’WzPlot_0’

See Also

TmCopy, TmDelete, TmPaste

TmDelVar Procedure
Removes variables from a VDA Tool.

Usage

TmDelVar, tool_name [, var_names]

Parameters

tool_name — A string containing the unique name of a VDA Tool.

var_names — (optional) A string array containing the names of the variables to
remove from the variable list of the specified VDA Tool.

Keywords

All — If nonzero, removes all the variables on the variable list of the VDA Tool.
This keyword takes precedence over the var_names parameter.

420 Application Developer’s Guide

Discussion

If neither the var_names parameter nor the All keyword is specified, no action is
taken.

Example
var_names = [’var1’, ’var2’, ’var3’]

TmAddVar, unique, var_names

TmDelVar, unique, var_names

See Also

TmAddVar, TmEnumerateVars, TmGetVarMainName

TmDelete Procedure
Permanently deletes the selected graphical elements from the specified VDA Tool.

Usage

TmDelete, tool_name

Parameters

tool_name — A string containing the unique name of a VDA Tool from which the
graphical elements will be deleted.

Keywords

None.

Discussion

The TmAddSelectedGrael function is used to add graphical elements to a selection
list maintained by the Tools Manager. Once on the selection list, graphical elements
can be copied, pasted, cut, or deleted. TmDelete cuts the graphical element or ele-
ments on the current selection list. The deleted elements are not moved to the
clipboard; thus, they cannot be pasted back into a VDA Tool window.

TmDeselectVars Procedure 421

The tool_name parameter for TmDelete must be the same as the tool name speci-
fied in the TmAddSelectedGrael function.

TmDelete is called by the Edit=>Delete function and by the Delete button on the
Button Bar.

Example

The following commands obtain the names of the graphical elements registered for
a VDA Tool, add one of the graphical elements to the selection list, then delete the
graphical element (a rectangle).

PRINT, TmEnumerateGraels(’WzPlot_0’)

TM_WINDOWID TM RECTANGLE LINE AXIS LEGEND TEXT MENUBAR
BUTTONBAR MESSAGE XX TM_HELP AXIS_0 AXIS_1 TM_DRAWING
RECTANGLE_0 LINE_1 GROUP_0

TmAddSelectedGrael, ’WzPlot_0’, ’RECTANGLE_0’

PRINT, TmEnumerateSelectedGraels(’WzPlot_0’)
RECTANGLE_0

TmDelete(’WzPlot_0’)

See Also

TmCopy, TmCut, TmPaste

TmDeselectVars Procedure
Clears the current list of selected variables.

Usage

TmDeselectVars

Parameters

None.

Keywords

None.

422 Application Developer’s Guide

Discussion

This procedure is used to remove variables from the list of selected variables. Usu-
ally, this routine is called before a new variable selection is made with
TmAddSelectedVars.

Example

This example demonstrates how variables from a VDA Tool are added to the vari-
able selection list, exported to another VDA Tool, and deleted from the variable
selection list.

PRINT, TmEnumerateSelectedVars()

; No variables are currently on the variable selection list.

PRINT, TmEnumerateVars(’WzPlot_0’)
HAN

; The variable HAN is currently displayed in the VDA Tool WzPlot_0.

TmAddSelectedVars, ’WzPlot_0’, ’HAN’

; Add the variable HAN in the VDA Tool WzPlot to the selected variables list.

PRINT, TmEnumerateSelectedVars()
HAN

; Enumerate the variables that are on the selected variables list.

TmExportSelection, [’WzPlot_2’]

; Export the variable on the selection list to another active VDA Tool.

TmDeselectVars

; Remove all variables from the variable selection list.

PRINT, TmEnumerateSelectedVars()

See Also

TmAddSelectedVars, TmEnumerateSelectedVars, TmExport,
TmExportSelection

TmDynamicDisplay Procedure 423

TmDynamicDisplay Procedure
Displays selected data in all active VDA Tools, provided that the VDA Tools can
display the related variable(s).

Usage

TmDynamicDisplay, indices

Parameters

indices — An associative array containing the names of one or more selected vari-
ables and the indices that were selected for each variable. This associative array is
built by the TM_SELECTED_DATA method procedure. The variable names are
the associative array keys and the indices are the associative array’s values.

Keywords

None.

Discussion

If you want the data that is selected in one VDA Tool to be automatically selected
(and highlighted) in other VDA Tools, use the routine TmDynamicDisplay.

TmDynamicDisplay is used in conjunction with the TM_DATA_SELECTION
method. Whenever data is selected in a VDA Tool, the TM_DATA_SELECTION
method procedure is called. You must decide what action this method procedure
takes. For instance, if you want the data selection to appear in all active VDA Tools
that can display the selected variable, then the method procedure must do the
following:

• Build an associative array containing the names of all the selected variables
and the selected indices for each variable.

• Call TmDynamicDisplay.

TmDynamicDisplay then does the following:

• Uses the keys and values of the associative array to set the
GLOBAL.VARIABLE.INDICES attribute for each selected variable.

• Uses the keys of the associative array to identify which active VDA Tools con-
tain the selected variables.

424 Application Developer’s Guide

• Executes the TM_DISPLAY method procedure for each of these identified
VDA Tools where TM_DISPLAY is set. (The TM_DISPLAY method proce-
dure must query the GLOBAL.VARIABLE.INDICES attribute to get the
indices to display for each variable.)

For instance, you can use the TmGetAttributes function to return the indices (a
200-element array):

INFO, TmGetAttribute(’GLOBAL’, ’X’, ’INDICES’)
Array(199)

If the TM_SELECTED_DATA method procedure calls TmDynamicDisplay, the
method procedure must distinguish among four possible cases:

• No Selection — If no data was selected, then the TM_SELECTED_DATA
method procedure returns an empty associative array. When TmDynamicDis-
play is called, nothing happens.

• Single Point Selection — If a single point is selected in the VDA Tool, then
the array built by the TM_SELECTED_DATA method procedure contains the
name of one variable (the key) and a single integer (the value). When TmDy-
namicDisplay is called, the selected point is highlighted in every active VDA
Tool that is associated with the selected variable.

• Multiple Point Selection — If more than one data point is selected, the array
built by the TM_SELECTED_DATA method procedure contains the name of
each selected variable and the selected indices from each selected variable.
When TmDynamicDisplay is called, the selected data is highlighted in every
active VDA Tool that is associated with the selected variable.

• Area Selection — In some VDA Tools, such as image display tools, it makes
more sense to pass the coordinates of the selection rectangle, rather than all of
the selected points, to TmDynamicDisplay. In this case, the associative array
contains the selected variable(s) and corresponding 2x2 arrays containing the
upper-left and lower-right vertices of the selection rectangle. When TmDy-
namicDisplay is called, the selected region is highlighted in every active VDA
Tool that is associated with the selected variable.

Example
indices = ASARR(var_name, index)

TmDynamicDisplay, indices

See Also

ASARR (in the PV-WAVE Reference)

TmDynamicShowVars Procedure 425

TmDynamicShowVars Procedure
Updates the variable list.

Usage

TmDynamicShowVars

Parameters

None.

Keywords

except — A string specifying the name of a VDA Tool that you do not which to
update.

Discussion

This procedure dynamically refreshes new variables and selected variables for a
VDA Tool. The VDA Tool WzVariable, in particular, uses this procedure.

TmEndCodeGen Procedure
Closes the file in which generated code is written.

Usage

TmEndCodeGen

Parameters

None.

Keywords

None.

426 Application Developer’s Guide

Discussion

The code generation functions allow a VDA Tool user to write the PV-WAVE code
used to create a plot, import data, or any other VDA Tool action.

TmEndCodeGen closes the code generation file and frees its logical unit number
(LUN). The code generation file is opened with TmStartCodeGen, and strings are
written to the file with TmCodeGen. When the writing is completed, call TmEnd-
CodeGen to write an end statement to the file and close it.

This code generation routine must be used after execution of the method
TM_CODEGEN.

TmEndCodeGen called from the File=>Code Generation menu item.

Example
TmEndCodeGen

See Also

TmCodeGen, TmStartCodeGen

TmEnumerateAttributes Function
Obtains the attributes for a specified graphical element, variable, or other item in a
VDA Tool.

Usage

attr_list = TmEnumerateAttributes(tool_name, item)

Parameters

tool_name — A string containing the unique name of a VDA Tool.

item — A string containing the name of a graphical element, variable, or other item
in the VDA Tool.

Returned Value

attr_list — A string array containing the names of the attributes that were set for
the specified item.

TmEnumerateAttributes Function 427

Keywords

None.

Discussion

Items like graphical elements and variables can have attributes associated with
them. Each attribute can have a value. For example, a line’s attributes might include
linestyle, line thickness, color, and others. This function simply lists all the
attributes associated with a specified item in a VDA Tool.

To obtain a list of all the items currently associated with a VDA Tool, use
TmEnumerateGraels. To obtain a list of variables, use TmEnumerateVars.

Example

The following commands list the graphical elements and items associated with a
VDA Tool. Then, the attributes for one of those items, an axis, is printed using
TmEnumerateAttributes. Each attribute has a value that can be obtained with
TmGetAttribute and set with TmSetAttribute.

PRINT, TmEnumerateGraels(’WzPlot_2’)
TM_WINDOWID TM RECTANGLE LINE AXIS LEGEND TEXT MENUBAR
BUTTONBAR MESSAGE WZPLOT_2_VAR0 TM_HELP AXIS_0 AXIS_1 TM_DRAWING

; List the graphical elements and items associated with the unique VDA Tool
; WzPlot_2.

PRINT, TmEnumerateAttributes(’WzPlot_2’, ’AXIS_0’)
BMARGIN STYLE TM TYPE TMARGIN SIZE ISLIT MOTION NB_HANDLES FONT
NMIN THICK LMAJ MIN PLACE COORD_SYS LSTYLE RANGE NMAJ MAX COORD
COLOR

; List the attributes associated with the graphical element AXIS_0 that is
; associated with WzPlot_2.

See Also

TmGetAttribute, TmSetAttribute

428 Application Developer’s Guide

TmEnumerateItems Function
Obtains the items defined for a specified VDA Tool.

Usage

item_list = TmEnumerateItems(tool_name)

Parameters

tool_name — A string containing the unique name of a VDA Tool.

Returned Value

item_list — A string array containing the names of the items that were defined for
the given VDA Tool.

Keywords

None.

Discussion

Items can include a wide variety of things that you want to put in a VDA Tool.
Some examples of items are:

• variables

• help files

• drawing area

• file names

This function simply lists all the items associated with a specified VDA Tool.

Example

The following command lists the items associated with a VDA Tool.

WzHistogram, HANNING(30, 30)

PRINT, TmEnumerateItems(’WzHistogram_0’)
LINE STATUS AXIS_0 TM_DRAWING TM_WINDOWID TM RECTANGLE AXIS TEXT
BITMAP BUTTONBAR MESSAGE TM_HELP AXIS_1
MENUBAR STATUS2 VIEW LEGEND

TmEnumerateMethods Function 429

; List the items associated with the unique VDA Tool
; WzHistogram_0.

See Also

TmEnumerateGraels, TmEnumerateVars

TmEnumerateMethods Function
Obtains the methods that were set for a VDA Tool.

Usage

methods = TmEnumerateMethods(tool_name)

Parameters

tool_name — A string containing the unique name of a VDA Tool.

Returned Value

methods — A string array containing the names of the methods that were set for
the specified VDA Tool.

Example

If the TM_DISPLAY, TM_CONVERT, and TM_CODEGEN methods were set for
a VDA Tool, TmEnumerateMethods returns the following:

PRINT, TmEnumerateMethods(tool_name)
TM_DISPLAY TM_CONVERT TM_CODEGEN

See Also

TmExecuteMethod, TmGetMethod, TmSetMethod

430 Application Developer’s Guide

TmEnumerateSelectedVars Function
Returns the names of variables on the selected variables list.

Usage

vars =TmEnumerateSelectedVars()

Parameters

None.

Returned Value

vars — A string array containing the $MAIN$ level names of the selected
variables.

Keywords

None.

Discussion

The selected variables list is a list of variables maintained by the Tools Manager.
This list enables variables to be exchanged between VDA Tools. The
TmAddSelectedVars function is used to add variables to the selected variables list.

Example

This example demonstrates how variables from a VDA Tool are added to the vari-
able selection list, exported to another VDA Tool, and deleted from the variable
selection list.

PRINT, TmEnumerateSelectedVars()

; No variables are currently on the variable selection list.

PRINT, TmEnumerateVars(’WzPlot_0’)
HAN

; The variable HAN is currently displayed in the VDA Tool WzPlot_0.

TmAddSelectedVars, ’WzPlot_0’, ’HAN’

; Add the variable HAN in the VDA Tool WzPlot to the selected variables list.

PRINT, TmEnumerateSelectedVars()

TmEnumerateToolNames Function 431

HAN

; Enumerate the variables that are on the selected variables list.

TmExportSelection, [’WzPlot_2’]

; Export the variable on the selection list to another active VDA Tool.

TmDeselectVars

; Remove all variables from the variable selection list.

See Also

TmAddSelectedVars, TmDeselectVars, TmExport, TmExportSelection

TmEnumerateToolNames Function
Returns all the registered VDA Tool names.

Usage

names = TmEnumerateToolNames()

Parameters

None.

Returned Value

names — A 1D array containing all the names (also referred to as handles) of the
currently registered VDA Tools.

Keywords

Titles — Returns a 1D string array containing the titles of the enumerated VDA
Tools.

Example

The following code initializes the Tools Manager, gets a unique name for WzPlot-
Tool, registers an instance of WzPlotTool, and enumerates all the handles currently
registered with the Tools Manager.

TmInit

432 Application Developer’s Guide

; Initialize the Tools Manager.

unique = TmGetUniqueToolName(’WzPlotTool’)

; A unique name is required for registration.

top = WwInit(’VDA’, ’Examples’, layout, $
Shell_name=’WzPlotTool’, Layout_name=’toolArea’, $
Title=unique_name, /Form)

TmRegister, unique_name, top

; Register the tool.

PRINT, TmEnumerateToolNames()
WzPlotTool_0

; Get all the handles currently registered.

See Also

TmGetTop, TmGetUniqueToolName, TmInit, TmRegister,
TmUnregister

TmEnumerateVars Function
Returns all the variables associated with an instance of a VDA Tool.

Usage

variables = TmEnumerateVars(tool_name)

Parameters

tool_name — A string containing the unique name of a VDA Tool.

Returned Value

variables — A 1D string array containing the names of the variables associated
with the specified VDA Tool.

Discussion

This function is used frequently in VDA Tool programs to extract variable names
that were passed to a VDA Tool for use in plotting, or data selection, or other kinds
of routines that require variables. For example, in a graphics tool,

TmExecuteMethod Procedure 433

TmEnumerateVars might be called by a plotting routine to find the names of vari-
ables that were passed to the VDA Tool program.

Example

The following code fragment shows how TmEnumerateVars can be used to get the
names of variables from a VDA Tool, and then use UPVAR to bind the variable
locally, in the WzTemplateConvert procedure.

PRO WzTemplateConvert, tool_name, user_data=user_data

plot_var = TmEnumerateVars(tool_name)

UPVAR, plot_var(0), local

. . .

See Also

TmAddVar, TmDelvar, TmGetVarMainName

TmExecuteMethod Procedure
Executes a method that was set by TmSetMethod.

Usage

TmExecuteMethod, tool_name, method_name

Parameters

tool_name — The name of a VDA Tool.

method_name — The name of the method to execute.

Keywords

No_Wset — If nonzero, indicates that the WSET command is not run to change the
current window.

Top — The name of the top-level widget.

434 Application Developer’s Guide

Discussion

TmExecuteMethod is used in a VDA Tool program to tell the VDA Tools Manager
when to execute a method for a particular instance of a VDA Tool. Methods allow
multiple instances of VDA Tools to take actions independently, such as displaying
graphics or generating PV-WAVE code. When a method is activated, a method pro-
cedure is called that performs an action for the specific instance of the VDA Tool
that triggered the method. It is up to the VDA Tools developer to determine which
events trigger specific methods, and to write appropriate method call procedures.

Example

The following method call procedure contains TmExecuteMethod statements to
convert coordinates and redraw graphics.

PRO DrawPlotCB, wid, data

; Get the tool name.
x = WtGet(wid, /Parent)

tool_name = WtGet(x, /Userdata)

TmExecuteMethod, tool_name, ’TM_CONVERT’

; Convert the coordinates.
TmExecuteMethod, tool_name, ’TM_DISPLAY’

; Redraw the graphics to ensure everything is ok.

END

See Also

TmEnumerateMethods, TmGetMethod, TmSetMethod

TmExport Procedure 435

TmExport Procedure
Exports $MAIN$-level variables to specified VDA Tools or to all currently active
VDA Tools.

Usage

TmExport, variable_names, destination_tool_names

Parameters

variable_names — A string array containing the names of $MAIN$ level variables
to export.

destination_tool_names — A string array containing the unique names of cur-
rently active VDA Tools to export the data to.

Keywords

All — If present and nonzero, exports the named variables to all VDA Tools that
accept imported data.

Discussion

The UPVAR or INFO commands can be used to obtain the names of variables on
the $MAIN$ program level.

Example

The following commands export two $MAIN$ level variables to the VDA Tool
WzPlot_1. The VDA Tool WzPlot_1 must be running before the data is exported
to it.

WAVE> info, /var
HIN FLOAT = Array(100)
HAN FLOAT = Array(100)

TmExport, [’han’, ’hin’], [’WzPlot_1’]

See Also

INFO (in the PV-WAVE Reference), UPVAR (in the PV-WAVE Reference),
TmExportSelection

436 Application Developer’s Guide

TmExportSelection Procedure
Exports the contents of the variable selection list to specified VDA Tools.

Usage

TmExportSelection, destination_tool_names

Parameters

destination_tool_names — A string array containing the names of currently active
VDA Tools to export the data to.

Keywords

All — If present and nonzero, export the variables on the selection list to all VDA
Tools that accept imported data.

Discussion

The Tools Manager maintains a list of variables that have been selected in a VDA
Tool. The selected variables list enables variables to be exchanged between VDA
Tools. Variables are added to the list with the TmAddSelectedVars routine.

Example

This example demonstrates how variables from a VDA Tool are added to the vari-
able selection list, exported to another VDA Tool, and deleted from the variable
selection list.

PRINT, TmEnumerateSelectedVars()

; No variables are currently on the variable selection list.

PRINT, TmEnumerateVars(’WzPlot_0’)
HAN

; The variable HAN is currently displayed in the VDA Tool WzPlot_0.

TmAddSelectedVars, ’WzPlot_0’, ’HAN’

; Add the variable HAN in the VDA Tool WzPlot to the selected variables list.

PRINT, TmEnumerateSelectedVars()
HAN

; Enumerate the variables that are on the selected variables list.

TmGetAttribute Function 437

TmExportSelection, [’WzPlot_2’]

; Export the variable on the selection list to another active VDA Tool.

TmDeselectVars

; Remove all variables from the variable selection list.

See Also

TmAddSelectedVars, TmDeselectVars, TmEnumerateSelectedVars,
TmExport

TmGetAttribute Function
Returns the value that was set for an attribute in a VDA Tool instance.

Usage

value = TmGetAttribute(tool_name, item, attr_name)

Parameters

tool_name — A string containing the unique name of a VDA Tool.

item — A string containing the name of a graphical element, variable, or other item
in the VDA Tool.

attr_name — A string containing an attribute name to get for the given item.

Returned Value

value — The value that was set for the attribute attr_name in the VDA Tool
instance.

Keywords

Default — Used to set a default value for the attribute. If the attribute you want to
get was not set, then the function will return this default value.

Discussion

TmGetAttribute is typically used in a method call procedure. For instance, when
the drawing method TM_DISPLAY is activated for a VDA Tool, a procedure is

438 Application Developer’s Guide

executed that performs some kind of graphics operation. TmGetAttribute allows
the procedures to obtain information from the Tools Manager about the values it
needs to render the plot.

Example 1

Calls like the following can be used by a VDA Tool plotting routine to obtain the
line color and linestyle that were registered with the Tools Manager using
TmSetAttribute. In this case, the attributes are associated with a variable.

color = TmGetAttribute(tool_name, var, ’COLOR’)

lstyle= TmGetAttribute(tool_name, var, ’LSTYLE’)

Example 2

The title for the VDA Tool could be kept in an attribute, and the color of a variable
could be set for future usage:

old_title = TmSetAttribute(tool_name, ’TM_TITLE’, ’TEXT’,$
title_text)

old_color = TmSetAttribute(tool_name, ’VARIABLE1’, ’COLOR’, ’RED’)

In the WzPlotTool plotting routine, the tool asks for some attribute settings:

xminrange = TmGetAttribute(tool_name, ’RANGE’, ’X_MIN’)

; Gets the Xrange for image.

ymaxrange = TmGetAttribute(tool_name, ’RANGE’, ’Y_MAX’)

; Gets the Yrange.

z_rotat = TmGetAttribute(tool_name, ’ROTATION’, ’Z’)

; Gets the Z_Rotation.

Example 3

This example code demonstrates the effect of the Default keyword when a graphi-
cal element is not set and when a one is set.

INFO, TmGetAttribute(n0, ’TM’, ’BAD_ATTR’)

<Expression> STRING = ’’

; The attribute was not previously set.

INFO, TmGetAttribute(n0, ’TM’, ’BAD_ATTR’, default=1B)

<Expression> BYTE = 1

; The attribute is set with the Default keyword.

TmGetMessage Function 439

INFO, TmGetAttribute(n0, ’TM’, ’BACKGROUND’)

<Expression> INT = 90

; The attribute BACKGROUND is already set.

INFO, TmGetAttribute(n0, ’TM’, ’BACKGROUND’, default=1B)

<Expression> INT = 90

; The Default keyword has no effect if the attribute was already set.

See Also

TmEnumerateAttributes, TmSetAttribute

TmGetMessage Function
Loads a string resource file into the resource database and extracts a message string
from the database.

Usage

message = TmGetMessage([message_file], message_code)

Parameters

message_file — (optional) The name of a string resource file where the messages
are stored. If this file has not already been loaded, it will be loaded before the mes-
sage is retrieved.

message_code — A string used to identify a message in a string resource file.

Returned Value

message — A string containing the message that was extracted from the string
resource file.

Keywords

None.

440 Application Developer’s Guide

Discussion

You only need to supply the filename for the message_file input parameter. The
pathname is assumed to be the following, where !Lang represents the value of the
!Lang system variable in PV-WAVE:

(UNIX) <wavedir>/xres/!Lang/vdatools

(OpenVMS) <wavedir>:[XRES.!Lang.VDATOOLS]

(Windows) <wavedir>\xres\!Lang\vdatools

Where <wavedir> is the main PV-WAVE directory.

Although the message file is passed to each call of TmGetMessage, the specified
string is only loaded once.

Example

This example shows a portion of the string resource file for the WzPlot VDA Tool:
wzglobal.ads. An excerpt from the source code for the WzPlot VDA Tool
shows how TmGetMessage is used to load this file into the resource database and
extract a string from the database. In this example, the string is extracted and
printed in the Message Area of the WzPlot window whenever a new variable is
passed to WzPlot.

String resource file excerpt:

! Data Import Messages (in wzglobal.ads)

!

imported_var: Imported Variable:

WzPlot source code:

msg = TmGetMessage(’wzglobal.ads’, ’imported_var’)

; Get the appropriate message text from the string resource file.

msg = msg + variable_list(j)

; Build a message string with the variable name.

WoAddMessage, tool_name, Message=msg

; Display the message in the VDA Tool’s Message Area.

See Also

WoAddMessage

TmGetMethod Function 441

TmGetMethod Function
Returns the data structure of the specified method.

Usage

method_call = TmGetMethod(tool_name, method_name)

Parameters

tool_name — A string containing the unique name of a VDA Tool.

method_name — A string containing the name of a method.

Returned Value

method_call — The name of the procedure in which the method was set.

Discussion

The method data structure contains two tags: the name of the method procedure
and a variable for user data.

Example

The following command shows that a method procedure called WzPlotDisplay is
registered with the TM_DISPLAY method in the VDA Tool instance WzPlot_0.

PRINT, TmGetMethod(’WzPlot_0’, ’TM_DISPLAY’)
{ WzPlotDisplay{}}

See Also

TmEnumerateMethods, TmExecuteMethod, TmSetMethod

442 Application Developer’s Guide

TmGetTop Function
Gets the top-level widget ID for a VDA Tool.

Usage

top = TmGetTop(tool_name)

Parameters

tool_name — A string containing the unique name of a VDA Tool.

Returned Value

top — (long) The top-level widget ID for the VDA Tool.

Keywords

None.

Discussion

TmGetTop is used to obtain the widget ID of the top-level VDA Tool widget. This
function is called when you exit a VDA Tool, unregister a VDA Tool, and create a
dialog box (dialog boxes are children of the top-level VDA Tool widget).

Example

This example shows how the top-level widget ID is used to create a dialog box. The
dialog box is actually a child of the top-level VDA Tool widget.

parent = TmGetTop(tool_name)

; Get the top-level widget ID.

title = TmGetMessage(’wzplot.ads’,’data_export_title’) $
+ ’ ’ + tool_name

; Get message text from the string resource file.

dialog = WoGenericDialog(parent, layout, $
’WzPlotDataExportCB’, Dialog_name = ’exportDataDialog’, $
Buttons=buttons, Title=title, $
Help=[’Export Selected Data Dialog Box’, helpfile], $
/Ok, /Apply, /Cancel)

; Create the dialog box using the top-level widget ID obtained from TmGetTop.

TmGetUniqueToolName Function 443

See Also

TmEnumerateToolNames, TmGetMessage, TmGetUniqueToolName,
TmInit, TmRegister, TmUnregister

TmGetUniqueToolName Function
Returns a unique name for a particular instance of a specified VDA Tool.

Usage

unique_name = TmGetUniqueToolName(tool_name)

Parameters

tool_name — A string containing the unique name of a VDA Tool.

Returned Value

unique_name — A unique name for the specified VDA Tool.

Keywords

None.

Discussion

Each VDA Tool must have a unique name, which allows the Tools Manager to keep
track of multiple instances of a VDA Tool. This unique name must be registered
with the Tools Manager before the VDA Tool can be used. To register a VDA Tool
name, use the TmRegister function.

Example

This call obtains a unique name for the VDA Tool called WzPlotTool.

unique = TmGetUniqueToolName(’WzPlotTool’)

444 Application Developer’s Guide

See Also

TmEnumerateToolNames, TmGetMessage, TmGetTop,
TmInit, TmRegister, TmUnregister

TmGetVarMainName Function
Returns the $MAIN$ level name of a variable.

Usage

var_name = TmGetVarMainName(tool_name, local_variable)

Parameters

tool_name — A string containing the unique name of a VDA Tool.

local_variable — The local variable for which you want the $MAIN$ level name.

Returned Value

var_name — The $MAIN$ level name of the local variable.

Keywords

NoCreate — If nonzero, the function does not create a new $MAIN$ variable, but
just returns the variable name.

Root — A string containing the base for the name of the $MAIN$ variable.

Discussion

If the variable does not exist on the $MAIN$ level, a new $MAIN$ level variable
is created, and its name is returned.

See Also

TmAddVar, TmDelVar, TmEnumerateVars

TmInit Procedure 445

TmInit Procedure
Initializes the VDA Tools Manager layer.

Usage

TmInit

Parameters

None.

Keywords

None.

Discussion

TmInit sets up the data structures, initializes the currently selected variables, and
performs other setup functions. If TmInit has already been called in the current PV-
WAVE session, subsequent calls to TmInit are ignored.

Example

You must call TmInit before using any VDA Tools Manager routines.

TmInit

See Also

TmEnumerateToolNames, TmGetMessage, TmGetTop,
TmGetUniqueToolName, TmRegister, TmUnregister

446 Application Developer’s Guide

TmList Function
Creates a list item.

Usage

list = TmList(tool_name)

Input Parameters

tool_name — A string specifying the unique name of a VDA Tool.

Returned Value

list — A string containing a unique name for the list. This value is used as input to
the other list functions.

Keywords

ExtendSize — An integer specifying the number of items by which to extend the
list. (Default: 10)

Discussion

This routine creates a Tm item with the name LIST_# (where # is a number
assigned to ensure that the list name is unique) with attributes ITEMS and FREE.

Example

This example creates a list associated with tool_name. As items are added and the
list becomes full, the list is extended by 25 items.

list_name = TmList(tool_name, ExtendSize=25)

INFO, list_name
LIST_NAME STRING = ’LIST_0’

See Also

TmListAppend, TmListClear, TmListDelete, TmListDestroy,
TmListExtend, TmListGetMethod, TmListInsert,
TmListReplace, TmListRetrieve, TmListSetMethod

TmListAppend Procedure 447

TmListAppend Procedure
Adds a new item at the end of the specified list.

Usage

TmListAppend, tool_name, list_name, item

Input Parameters

tool_name — A string specifying the unique name of a VDA Tool.

list_name — A string specifying the unique name of a list.

item — The item to append to the list. This parameter can be any PV-WAVE
variable.

Keywords

None.

Discussion

If a new item is required elsewhere in the list, use TmListInsert instead of
TmListAppend. If the list is not long enough to accept another item, the list is
extended by the number of items specified when the list was created.

This procedure defines the behavior of the TM_LIST_APPEND method.

Example

The following code adds a string and an array to the end of a list.

; Adds the string ’My String’ at the end of the list.

list_name = TmList(tool_name)

TmListAppend, tool_name, list_name, ’My String’

INFO, TmListRetrieve(tool_name, list_name), /Full
<Expression> LIST = List(1)
STRING = ’My String’

; Adds the array [1,2,3] at the end of the list.

TmListAppend, tool_name, list_name, [1,2,3]

448 Application Developer’s Guide

INFO, TmListRetrieve(tool_name, list_name), /Full
<Expression> LIST = List(2)
STRING = ’My String’
INT = Array(3)

See Also

TmList, TmListSetMethod, TmListInsert

TmListClear Procedure
Resets a specified list to its initial state, clearing all previously defined items.

Usage

TmListClear, tool_name, list_name

Input Parameters

tool_name — A string specifying the unique name of a VDA Tool.

list_name — A string specifying the unique name of a list.

Keywords

None.

Discussion

This procedure defines the behavior of the TM_LIST_CLEAR method.
TmListDelete can be used to delete individual items in the list.

Example

The following code creates a list and then clears all items from the list.

list_name = TmList(tool_name)

TmListAppend, tool_name, list_name, ’My String’

INFO, TmListRetrieve(tool_name, list_name), /Full
<Expression> LIST = List(1)
STRING = ’My String’

TmListClear, tool_name, list_name

TmListDelete Procedure 449

INFO, TmListRetrieve(tool_name, list_name), /Full
<Expression> LIST = List(0)

See Also

TmList, TmListSetMethod, TmListDelete

TmListDelete Procedure
Deletes an item in the specified list.

Usage

TmListDelete, tool_name, list_name [, pos]

Input Parameters

tool_name — A string specifying the unique name of a VDA Tool.

list_name — A string specifying the unique name of a list.

pos — (optional) An integer specifying the position in the list of the item to delete.
The first item is 0, the second item is 1, and so on. If pos is not specified, the last
item in the list is deleted.

Keywords

None.

Discussion

This procedure defines the behavior of the TM_LIST_DELETE method.

Example

The following code creates a list, removes the last element in the list, and then
removes the first item in the list.

; Removes the last element in the list.

list_name = TmList(tool_name)

TmListAppend, tool_name, list_name, ’First Item’

TmListAppend, tool_name, list_name, 2L

450 Application Developer’s Guide

TmListAppend, tool_name, list_name, 3.3

INFO, TmListRetrieve(tool_name, list_name), /Full
<Expression> LIST = List(3)
STRING = ’First Item’
LONG = 2
FLOAT = 3.30000

TmListDelete, tool_name, list_name

INFO, TmListRetrieve(tool_name, list_name), /Full
<Expression> LIST = List(2)
STRING = ’First Item’
LONG = 2

; Removes the first item in the list.

TmListDelete, tool_name, list_name, 0

INFO, TmListRetrieve(tool_name, list_name), /Full
<Expression> LIST = List(1)
LONG = 2

See Also

TmList, TmListSetMethod, TmListClear

TmListDestroy Procedure
Clears all items and destroys the list.

Usage

TmListDestroy, tool_name, list_name

Input Parameters

tool_name — A string specifying the unique name of a VDA Tool.

list_name — A string specifying the unique name of a list.

Keywords

None.

TmListExtend Procedure 451

Discussion

Once a list is destroyed, do not access the list instance again without creating it
using the TmList routine.

This procedure defines the behavior of the TM_LIST_DESTROY method.

Example

These commands destroy a list so that list_name is no longer a valid list handle.

list_name = TmList(tool_name)

TmListAppend, tool_name, list_name, ’First Item’

TmListDestroy, tool_name, list_name

See Also

TmList, TmListSetMethod, TmListClear

TmListExtend Procedure
Extends the specified list by adding empty items.

Usage

TmListExtend, tool_name, list_name

Input Parameters

tool_name — A string specifying the unique name of a VDA Tool.

list_name — A string specifying the unique name of a list.

Keywords

NumItems — An integer specifying the number of items to add. The value of this
keyword overrides the ExtendSize keyword specified in TmList.

Discussion

The list is extended in increments greater than 1 to avoid excessive copying.

452 Application Developer’s Guide

This procedure defines the behavior of the TM_LIST_EXTEND method.

Example

These commands extend a list.

; Extends the list by the number specified in the ExtendSize
; keyword of the TmList command (default: 10).

TmListExtend, tool_name, list_name

; Extends the list by 15 items.

TmListExtend, tool_name, list_name, NumItems=15

See Also

TmList, TmListSetMethod

TmListGetMethod Function
Returns the procedure name associated with the specified list method name.

Usage

procedure_name = TmListGetMethod(tool_name, list_name, method_name)

Input Parameters

tool_name — A string specifying the unique name of a VDA Tool.

list_name — A string specifying the unique name of a list.

method_name — A string specifying the name of a method.

Returned Value

procedure_name — A string containing the name of the list method procedure if
set, otherwise a NULL string is returned.

TmListGetMethod Function 453

Keywords

None.

Discussion

The default list method names and their procedures are listed in the following table:

NOTE Code for the default list method procedures are contained in the file, where
WAVE_DIR is the the main PV-WAVE directory.

(UNIX) WAVE_DIR/lib/vdatools/tmlist.pro

(OpenVMS) WAVE_DIR:[LIB.VDATOOLS]TMLIST.PRO

(Windows) WAVE_DIR\lib\vdatools\tmlist.pro

Use TmListSetMethod to override the default method procedures.

Example

In this example, a user-defined TM_LIST_APPEND method is called. The method
adds all items except the string ’Dont_Add’.

; Create the method procedure.

PRO MyListAppend, tool_name, list_name, item

DECLARE FUNC, TmGetAttribute

Description Method Name Method Procedure

Extend a list TM_LIST_EXTEND TmListExtend

Append to a list TM_LIST_APPEND TmListAppend

Insert in a list TM_LIST_INSERT TmListInsert

Retrieve from a list TM_LIST_RETRIEVE TmListRetrieve

Replace a list element TM_LIST_REPLACE TmListReplace

Delete (Undo) previous
change to a list

TM_LIST_DELETE TmListDelete

Clear list elements TM_LIST_CLEAR TmListClear

Destroy list elements TM_LIST_DESTROY TmListDestroy

454 Application Developer’s Guide

DECLARE FUNC, TmSetAttribute

items = TmGetAttribute(tool_name, list_name, ’ITEMS’)

free = TmGetAttribute(tool_name, list_name, ’FREE’)

IF free GE N_ELEMENTS(items) THEN BEGIN

TmListExtend, tool_name, list_name

items = TmGetAttribute(tool_name, list_name, ’ITEMS’)

ENDIF

IF item NE ’Dont_Add’ THEN BEGIN

items(free) = item

s = TmSetAttribute(tool_name, list_name, ’ITEMS’, items)

s = TmSetAttribute(tool_name, list_name, ’FREE’, free+1)

ENDIF

END

; Create a list and append to it.

list_name = TmList(tool_name)

TmListSetMethod, tool_name, list_name, ’TM_LIST_APPEND’, $

’MyListAppend’

TmListAppend, tool_name, list_name, ’First Item’

INFO, TmListRetrieve(tool_name, list_name), /Full
<Expression> LIST = List(1)
STRING = ’First Item’

TmListAppend, tool_name, list_name, ’Dont_Add’

INFO, TmListRetrieve(tool_name, list_name), /Full
<Expression> LIST = List(1)
STRING = ’First Item’

; Use TmListGetMethod to access the name of the method and
; execute it explicitly.

new_var = ’Second Item’

var_name = ’new_var’

method = TmListGetMethod(tool_name, list_name, ’TM_LIST_APPEND’)

INFO, method

METHOD STRING = ’MyListAppend’

s = EXECUTE(method + ’, tool_name, list_name, ’ + var_name)

TmListInsert Procedure 455

INFO, TmListRetrieve(tool_name, list_name), /Full

<Expression> LIST = List(2)
STRING = ’First Item’
STRING = ’Second Item’

See Also

TmList, TmListSetMethod

TmListInsert Procedure
Inserts a new item into the specified list.

Usage

TmListInsert, tool_name, list_name, item, pos

Input Parameters

tool_name — A string specifying the unique name of a VDA Tool.

list_name — A string specifying the unique name of a list.

item — A string specifying the item to append to the list.

pos — An integer specifying the position before which to insert a new item into the
list.

Keywords

None.

Discussion

The pos parameter indicates the position before which to insert the new item. The
first item is 0; the second item is 1, and so on. If a new item is required at the end
of the list, use TmListAppend instead of TmListInsert.

This procedure defines the behavior of the TM_LIST_INSERT method.

456 Application Developer’s Guide

Example

This example creates a list and inserts items into it.

; Inserts the string ’New Item’ before the first item in the list.

list_name = TmList(tool_name)

TmListAppend, tool_name, list_name, ’First Item’

TmListAppend, tool_name, list_name, 2L

TmListInsert, tool_name, list_name, ’New Item’, 0

INFO, TmListRetrieve(tool_name, list_name), /Full
<Expression> LIST = List(3)
STRING = ’New Item’
STRING = ’First Item’
LONG = 2

; Insert the float 1.1 before the third item in the list.

TmListInsert, tool_name, list_name, 1.1, 2

INFO, TmListRetrieve(tool_name, list_name), /Full
<Expression> LIST = List(4)
STRING = ’New Item’
STRING = ’First Item’
FLOAT = 1.10000
LONG = 2

See Also

TmList, TmListSetMethod, TmListAppend

TmListReplace Procedure
Replaces an item in a list with a new item.

Usage

TmListReplace, tool_name, list_name, item, pos

Input Parameters

tool_name — A string specifying the unique name of a VDA Tool.

TmListReplace Procedure 457

list_name — A string specifying the unique name of a list.

item — The new item to add to the list. This parameter may be any PV-WAVE
variable.

pos — An integer specifying the position of the item to replace.

Keywords

None.

Discussion

The pos parameter indicates the position of the item to replace. The first item is 0;
the second item is 1, and so on. If the position specified falls beyond the end of the
list, the item will be appended to the list.

This procedure defines the behavior of the TM_LIST_REPLACE method.

Example

This example replaces the third item in the list with the string ’New Item’.

list_name = TmList(tool_name)

TmListAppend, tool_name, list_name, ’First Item’

TmListAppend, tool_name, list_name, 2L

TmListAppend, tool_name, list_name, 3.3

INFO, TmListRetrieve(tool_name, list_name), /Full
<Expression> LIST = List(3)
STRING = ’First Item’
LONG = 2
FLOAT = 3.30000

TmListReplace, tool_name, list_name, ’New Item’, 2

INFO, TmListRetrieve(tool_name, list_name), /Full
<Expression> LIST = List(3)
STRING = ’First Item’
LONG = 2
STRING = ’New Item’

See Also

TmList, TmListSetMethod

458 Application Developer’s Guide

TmListRetrieve Function
Gets the items currently set in the specified list.

Usage

items = TmListRetrieve(tool_name, list_name)

Input Parameters

tool_name — A string specifying the unique name of a VDA Tool.

list_name — A string specifying the unique name of a list.

Returned Value

items — A list array containing the currently set items or an empty list if no items
have been set.

Keywords

Count — Returns the number of items retrieved. (integer)

Discussion

Only those items that have been set are returned. Items that have been allocated but
not used are not returned.

This procedure defines the behavior of the TM_LIST_RETRIEVE method.

Example

This example retrieves all the items in a list and uses the Count keyword to get the
number of items in the list.

; Retrieve all the items in the list.

list_name = TmList(tool_name)

TmListAppend, tool_name, list_name, ’First Item’

TmListAppend, tool_name, list_name, 2L

TmListInsert, tool_name, list_name, ’New Item’, 0

TmListSetMethod Procedure 459

items = TmListRetrieve(tool_name, list_name)

INFO, items, /Full
ITEMS LIST = List(3)
STRING = ’New Item’
STRING = ’First Item’
LONG = 2

; Use the Count keyword to return the number of items in the list.

items = TmListRetrieve(tool_name, list_name, Count=count)

INFO, items
ITEMS LIST = List(3)

PRINT, count
3

See Also

TmList, TmListSetMethod

TmListSetMethod Procedure
Sets the method procedure name for a specific list method.

Usage

TmListSetMethod, tool_name, list_name, method_name, method

Input Parameters

tool_name — A string specifying the unique name of a VDA Tool.

list_name — A string specifying the unique name of a list.

method_name — A string specifying the name of the method to override.

method — A string specifying the name of the procedure to execute when
method_name is requested.

Keywords

None.

460 Application Developer’s Guide

Discussion

This routine overrides the default method procedure provided for the following list
methods:

NOTE Code for the default list method procedures are contained in the file, where
WAVE_DIR is the main PV-WAVE directory.

(UNIX) WAVE_DIR/lib/vdatools/tmlist.pro

(OpenVMS) WAVE_DIR:[LIB.VDATOOLS]TMLIST.PRO

(Windows) WAVE_DIR\lib\vdatools\tmlist.pro

When overriding a method, you are responsible for properly updating the associ-
ated attributes to reflect the desired change.

Example

See the example for TmListGetMethod.

See Also

TmList, TmListGetMethod

Description Method Name Method Procedure

Extend a list TM_LIST_EXTEND TmListExtend

Append to a list TM_LIST_APPEND TmListAppend

Insert in a list TM_LIST_INSERT TmListInsert

Retrieve from a list TM_LIST_RETRIEVE TmListRetrieve

Replace a list element TM_LIST_REPLACE TmListReplace

Delete (Undo) previous
change to a list

TM_LIST_DELETE TmListDelete

Clear list elements TM_LIST_CLEAR TmListClear

Destroy list elements TM_LIST_DESTROY TmListDestroy

TmPaste Procedure 461

TmPaste Procedure
Pastes the graphical elements from the clipboard to the specified VDA Tool.

Usage

TmPaste, tool_name

Parameters

tool_name — A string containing the unique name of a VDA Tool into which to
paste the graphical elements.

Keywords

None.

Discussion

The TmAddSelectedGrael function is used to add graphical elements to a selection
list maintained by the Tools Manager. Once on the selection list, graphical elements
can be copied, pasted, cut, or deleted. TmPaste pastes the graphical element or ele-
ments currently on the clipboard (a temporary buffer) to the specified VDA Tool.

Example

The following commands obtain the names of the graphical elements registered for
a VDA Tool, add one of the graphical elements to the selection list, then copy and
paste the graphical element (a rectangle).

PRINT, TmEnumerateGraels(’WzPlot_0’)

TM_WINDOWID TM RECTANGLE LINE AXIS LEGEND TEXT MENUBAR
BUTTONBAR MESSAGE XX TM_HELP AXIS_0 AXIS_1 TM_DRAWING
RECTANGLE_0 LINE_1 GROUP_0

TmAddSelectedGrael, ’WzPlot_0’, ’RECTANGLE_0’

PRINT, TmEnumerateSelectedGraels(’WzPlot_0’)
RECTANGLE_0

TmCopy, ’WzPlot_0’

TmPaste, ’WzPlot_0’

462 Application Developer’s Guide

See Also

TmCopy, TmCut, TmDelete

TmRegister Procedure
Registers a VDA Tool with the Tools Manager.

Usage

TmRegister, unique_name, topShell

Parameters

unique_name — The name returned by TmGetUniqueToolName.

topShell — The widget ID of the top-level shell of the VDA Tool.

Keywords

Title — A string specifying the title of the VDA Tool. This title is automatically
added to the Windows menu.

Discussion

You have to register a VDA Tool with the VDA Tools Manager before any opera-
tions can be performed with the Tool. By registering the Tool, you add it to the
Tools Manager data structure, which enables the Tools Manager to keep track of
the characteristics of multiple instances of the Tool.

The VDA Tool name that is registered must be unique. An error results if the input
VDA Tool name already exists. Use TmGetUniqueToolName to obtain a unique
name.

If you do not set the window title with the Title keyword, then you have to use
WoSetWindowTitle to add the title to the Windows menu.

Example

The following lines show how a unique VDA Tool name is obtained and registered
with the Tools Manager. Note that the top-level widget must be defined before the
VDA Tool is registered.

TmRestoreTemplate Function 463

TmInit

unique = TmGetUniqueToolName(’WzPlotTool’)

; Obtain a unique name for the VDA Tool.

top = WwInit(’VDA’, ’Examples’, layout, $
Shell_name=’wzplottool’, Layout_name=’toolArea’, $
Title=unique_name, /Form)

; Initialize the top-level widget.

TmRegister, unique, top

; Register the unique VDA Tool name with the Tools Manager.

The remainder of the program is omitted from this example.

See Also

TmEnumerateToolNames, TmGetMessage, TmGetTop,
TmGetUniqueToolName, TmInit, TmUnregister, WoSetWindowTitle

TmRestoreTemplate Function
Restores a saved VDA Tool template.

Usage

status = TmRestoreTemplate(tool_name, filename)

Parameters

tool_name — A string containing the unique name of a VDA Tool.

filename — A string containing the name of the file containing the saved template.

Keywords

None.

Returned Value

status — A returned value of 1 indicates success; 0 (zero) indicates failure.

464 Application Developer’s Guide

Discussion

A template is a VDA Tool without any data associated with it. The template con-
tains all of the modifications to the VDA Tool — colors, axes, graphical elements
— that were set when the template file was saved.

When a VDA Tool is saved with TmSaveTools, it can be restored in two ways:
using TmRestoreTools or TmRestoreTemplate. TmRestoreTools restores the entire
VDA Tool, including the data associated with it. TmRestoreTemplate restores the
VDA Tool, but it does not restore any data that was associated with the VDA Tool
when it was saved.

Example
status=TmRestoreTemplate(tool_name, ’saved_template.xdr’)

See Also

TmRestoreTools, TmSaveTools

TmRestoreTools Function
Restores the VDA Tools that were saved with the TmSaveTools procedure.

Usage

status = TmRestoreTools(filename)

Parameters

filename — A string containing the name of the VDA Tool save file created with
the TmSaveTools procedure.

Keywords

Restore_CT — If present and nonzero, restores the colortable from a save file cre-
ated by TmSaveTools. If the save file does not contain a colortable, then this
keyword is ignored.

Template — If present and nonzero, saved VDA Tools are restored without the val-
ues of their variables.

TmSaveTools Procedure 465

Returned Value

status — A returned value of 1 indicates success; 0 (zero) indicates failure.

Discussion

This procedure is designed specifically for use in restoring VDA Tools that were
saved with TmSaveTools. It differs from the regular RESTORE procedure in that
it ensures that the Tools Manager data structure is restored properly.

Example
status=TmRestoreTools(’vdaapp.sav’)

See Also

TmSaveTools, TmRestoreTemplate

TmSaveTools Procedure
Saves the specified VDA Tools in a file.

Usage

TmSaveTools, filename [, tool_names]

Parameters

filename — A string containing the name of a file in which to save the specified
VDA Tools.

tool_names — (optional) A string array of unique VDA Tool names.

Keywords

All — If present and nonzero, all currently running tools are saved in the specified
file. This keyword takes precedence over the tool_names parameter.

466 Application Developer’s Guide

Discussion

This procedure is designed specifically for use in saving VDA Tools. It differs from
the regular SAVE procedure in that it ensures that the Tools Manager data structure
is saved properly so that it can be restored later.

If neither the tool_names parameter nor the All keyword is specified, no action is
taken.

Example
TmSaveTools, ’vdaapp.sav’, /All

See Also

TmRestoreTools, TmRestoreTemplate

TmSetAttribute Function
Set an attribute for an item in the given VDA Tool.

Usage

value = TmSetAttribute(tool_name, item, attr_name, attr_value)

Parameters

tool_name — A string containing the unique name of a VDA Tool.

item — The name of an item associated with the VDA Tool.

attr_name — A string specifying an attribute to set for the given item.

attr_value — A value to set for the given attribute.

Returned Value

value — Returns the previously set attribute value. If no attribute value was previ-
ously set, the function returns an empty string.

Keywords

None.

TmSetAttribute Function 467

Discussion

TmSetAttribute is used to register attributes and their values with the Tools Man-
ager. The Tools Manager stores information about every item added to a VDA Tool
instance in its data structure. This information includes the VDA Tool’s unique
name and items that have been assigned to the VDA Tool, such as graphical ele-
ments and variables. Each item added to a VDA Tool can have a set of
characteristics that the VDA Tool programmer defines. These characteristics are
called attributes, and attributes can be assigned values.

Example

Assume that an instance of a VDA Tool is currently running, and that the variable
var was passed to the VDA Tool (possibly when the VDA Tool was called). The
following code retrieves the name of the variable that was passed to the VDA Tool
and registers that variable with the Tools Manager. Then, several attributes are set
for the variable for that instance of the VDA Tool. When the VDA Tool displays
the data in the variable, the plot will reflect these set attributes (e.g., line color, line-
style, plot symbol type, and symbol color).

INFO, var, upvar=main_name

; From within the VDA Tool program level, obtain the name of the
; variable var on the $MAIN$ program level.

TmAddVar, unique, main_name

; Register the variable to the Tools Manager.

tmp = TmSetAttribute(unique, main_name, ’COLOR’, 6)

; Set attributes with which to display the variable: color, linestyle, plot symbol,
; and symbol color.

tmp = TmSetAttribute(unique, main_name, ’LSTYLE’,8)

tmp = TmSetAttribute(unique, main_name, ’PSYM’, 10)

tmp = TmSetAttribute(unique, main_name, ’PSYM_COLOR’, 12)

See Also

TmEnumerateAttributes, TmGetAttribute

468 Application Developer’s Guide

TmSetMethod Procedure
Sets a method for a given VDA Tool.

Usage

TmSetMethod, tool_name, method_name, method_call

Parameters

tool_name — A string containing the unique name of a VDA Tool.

method_name — The name of the method to set for the given VDA Tool.

method_call — The name of a procedure to execute when the method is called.

Keywords

user_data — A string containing data associated with the method.

Discussion

A method is a program that is executed in response to a trigger in a VDA Tool, such
as a menu or button selection or mouse click. Normally, a VDA Tool will have sev-
eral methods defined for it.

When a method is executed, the Tools Manager helps direct the subsequent action.
The Tools Manager keeps track of the unique instance of the VDA Tool to which
to apply the method, the name of the program to execute, and any data associated
with that specific tool that the method program needs.

Method Call Procedure Parameters

The method call procedure must have the following parameters:

tool_name — The name of the VDA Tool for which the method is set.

userdata — Any data you wish to pass to the procedure.

Example

The following TmSetMethod calls set methods for drawing, code generation,
restore, and coordinate conversion. The function takes the unique name of the VDA

TmStartCodeGen Procedure 469

Tool, the name of a method, and the name of the procedure to call whenever the
method is activated.

For instance, it is necessary to program a graphical VDA Tool, such as a 2D plot
tool, to activate the TM_DISPLAY method whenever the Tool window is opened
or redrawn. When TM_DISPLAY is triggered by such an event, a procedure is exe-
cuted that contains the actual graphics commands. For a 2D plot tool, the
commands might include PLOT and OPLOT. For a 3D surface tool, the SURFACE
command might be called as part of this drawing procedure. It is up to the VDA
Tools developer to provide the appropriate drawing procedure.

TmSetMethod, unique, ’TM_DISPLAY’, ’WzPlotDisplay’

TmSetMethod, unique, ’TM_CODEGEN’, ’WzPlotCodgen’

TmSetMethod, unique, ’TM_RESTORE’, ’WzPlot’

TmSetMethod, unique, ’TM_CONVERT’, ’WzPlotConvert’

See Also

TmEnumerateMethods, TmExecuteMethod, TmGetMethod

TmStartCodeGen Procedure
Opens a file into which PV-WAVE code is written.

Usage

TmStartCodegen, filename

Parameters

filename — A string containing the name of a file in which to write the generated
PV-WAVE code.

Keywords

None.

Discussion

The code generation functions allow a VDA Tool user to write the PV-WAVE code
used to create a plot, import data, or any other VDA Tool action.

470 Application Developer’s Guide

TmStartCodeGen opens the code generation file. Strings are written to this file with
TmCodeGen. When the writing is completed, TmEndCodeGen is called to write
an end statement to the file and close it.

This routines is called before the execution of the TM_CODEGEN method.

Example
TmStartCodeGen, ’AppCode.pro’

See Also

TmCodeGen, TmEndCodeGen

TmUnregister Procedure
Removes the specified VDA Tool from the Tools Manager registry.

Usage

TmUnregister, tool_name

Parameters

tool_name — A string containing the unique name of a currently registered VDA
Tool.

Keywords

None.

Example

The following code simply initializes the VDA Tools Manager, obtains a unique
VDA Tool name, creates a top-level widget, and registers the VDA Tool. The
TmEnumerateToolNames function verifies that the Tool was registered. Then, the
tool is unregistered. This too is confirmed with TmEnumerateToolNames.

TmInit

unique = TmGetUniqueToolName(’WzPlotTool’)

top = WwInit(’VDA’, ’Examples’, layout, $

TmUnregister Procedure 471

Shell_name=’WzPlotTool’, Layout_name=’toolArea’, $
Title=unique_name, /Form)

TmRegister, unique, top

PRINT, TmEnumerateToolNames()
WzPlotTool_0

; Print the names of the tools currently registered with the Tools Manager.

TmUnregister, unique

PRINT, TmEnumerateToolNames()

; Note that the previously registered tool name is now removed.

See Also

TmEnumerateToolNames, TmGetMessage, TmGetTop,
TmGetUniqueToolName, TmInit, TmRegister

472 Application Developer’s Guide

473

CHAPTER

10

Graphical Elements API (Tm)
This chapter describes the new VDA Tools Graphical Element (GRAEL) API rou-
tines. These functions allow the VDA Tools developer to manipulate and add
graphical elements in VDA Tools.

TmAddGrael Procedure
Adds a graphical element to the graphical element list for the specified instance of
a VDA Tool.

Usage

TmAddGrael, tool_name, grael_name

Parameters

tool_name — A string containing the unique name of a VDA Tool.

grael_name — A string containing the unique name of the graphical element to
add.

Keywords

Rect — A two-element array specifying the upper-left and lower-right corners of a
rectangle, in device coordinates. The rectangle specifies the boundary in which the
user must click to select the item.

474 Application Developer’s Guide

Discussion

This procedure allows you to add a new graphical element to a VDA Tool. To create
a graphical element, you must first define it with TmSetAttribute and then associate
a method with it with TmSetMethod. Use TmGetUniqueGraelName to obtain a
unique name for the new graphical element.

Example
TmAddGrael, ’WzPlot_0’, ’CIRCLE’

See Also

TmDelGrael, TmEnumerateGraels, TmGetGraelRectangle,
TmGetUniqueGraelName, TmSetGraelRectangle

TmAddSelectedGrael Procedure
Adds a graphical element to the graphical element selection list.

Usage

TmAddSelectedGrael, tool_name, grael_name

Parameters

tool_name — A string containing the unique name of a VDA Tool.

grael_name — A string containing the name of the graphical element to add to the
graphical element selection list.

Keywords

None.

Discussion

The graphical element selection list enables graphical elements to be cut, copied,
pasted, and deleted from VDA Tools. To get a list of graphical elements associated
with a given VDA Tool, use the TmEnumerateGraels function. To see which graph-
ical elements are currently on the selection list, use TmEnumerateSelectedGraels.

TmAxis Procedure 475

If the grael_name is already selected (on the selection list), no action is taken.

Example

The following commands get the names of the items associated with a VDA Tool,
then add one of the items, a graphical element (rectangle), to the selected list.

PRINT, TmEnumerateGraels(’WzPlot_0’)

TM_WINDOWID TM RECTANGLE LINE AXIS LEGEND TEXT MENUBAR
BUTTONBAR MESSAGE XX TM_HELP AXIS_0 AXIS_1 TM_DRAWING RECTANGLE_0
LINE_1 GROUP_0

TmAddSelectedGrael, ’WzPlot_0’, ’RECTANGLE_0’

PRINT, TmEnumerateSelectedGraels(’WzPlot_0’)
RECTANGLE_0

See Also

TmDelSelectedGraels, TmEnumerateSelectedGraels

TmAxis Procedure
Adds axes to a VDA Tool.

Usage

TmAxis, tool_name

Parameters

tool_name — A string containing the unique name of a VDA Tool.

Keywords

Right — If present and nonzero, adds an axis to the right edge of the plot data area.

Left — If present and nonzero, adds an axis to the left edge of the plot data area.

Top — If present and nonzero, adds an axis to the top edge of the plot data area.

Bottom — If present and nonzero, adds an axis to the bottom edge of the plot data
area.

Normal — If present and nonzero, axes are positioned in normal coordinates.

476 Application Developer’s Guide

Data — If present and nonzero, axes are positioned in data coordinates.

Thick — Specifies the thickness (in pixels) of the axes.

Color — Specifies the index of the color of the axes.

No_Draw — If present and nonzero, no axes are drawn.

Discussion
TmAxis is a graphical element (GRAEL) routine. GRAELs are predefined graph-
ics routines used by VDA Tools. These routines allow you to add, configure, and
remove graphical elements in the VDA Tool display area. The standard set of
GRAELs includes axes, text, bitmaps, legends, lines, and rectangles. This standard
set is accessible from the standard VDA Tool menu bar and button bar, which are
provided by the VDA Utility routines WoMenuBar and WoButtonBar.

Example
The following example code is a callback routine for a menu bar. This callback exe-
cutes TmAxis in response to menu selections.

PRO AxisCB, wid, index

; Go up one level in the menu.

x = WtGet(wid, /Parent)

tool_name = GetMenuBarToolName(x)

; Create the requested axis.

CASE index OF

 1: BEGIN ; Left

 TmAxis, tool_name, /Left

 END

 2: BEGIN ; Right

 TmAxis, tool_name, /Right

 END

 3: BEGIN ; Top

 TmAxis, tool_name, /Top

 END

 4: BEGIN ; Bottom

 TmAxis, tool_name, /Bottom

 END

 ENDCASE

END

TmBitmap Procedure 477

See Also

TmText, TmBitmap, TmLegend, TmLine, TmRect

TmBitmap Procedure
Adds a bitmap (2D array) to a VDA Tool.

Usage

TmBitmap, tool_name, bitmap_name

Parameters

tool_name — A string containing the unique name of a VDA Tool.

bitmap_name — A string containing the name of a $MAIN$ level variable con-
taining a 2D array.

Keywords

None.

Discussion

TmBitmap is a graphical element (GRAEL) routine. GRAELs are predefined
graphics routines used by VDA Tools. These routines allow you to add, configure,
and remove graphical elements in the VDA Tool display area. The standard set of
GRAELs includes axes, text, bitmaps, legends, lines, and rectangles. This standard
set is accessible from the standard VDA Tool menu bar and button bar, which are
provided by the VDA Utility routines WoMenuBar and WoButtonBar.

Example

The following line adds a bitmap called vni_logo to the VDA Tool WzPlot_0
after the user clicks MB1 in the drawing area.

TmBitmap, ’WzPlot_0’, ’vni_logo’

See Also

TmAxis, TmLegend, TmLine , TmRect, TmText

478 Application Developer’s Guide

TmBottomGrael Procedure
Sets the specified graphical element to be on the bottom of the display list (dis-
played behind the other graphical elements).

Usage

TmBottomGrael, tool_name, grael_name

Parameters

tool_name — A string containing the unique name of a VDA Tool.

grael_name — A string containing the name of the graphical element to move to
the bottom.

Keywords

None.

Discussion

This function is called by the Edit=>Bottom command on the graphical VDA
Tools. A list of graphical elements for a given VDA Tool can be obtained with
TmEnumerateGraels.

Example
TmBottomGrael, ’WzPlot_0’, ’GROUP_0’

See Also

TmTopGrael

TmDelGrael Procedure 479

TmDelGrael Procedure
Removes a specified graphical element from the list of graphical elements associ-
ated with a VDA Tool instance.

Usage

TmDelGrael, tool_name, grael_name

Parameters

tool_name — A string containing the unique name of a VDA Tool.

grael_name — A string containing the name of the graphical element to delete.

Keywords

All — When specified and nonzero, deletes all graphical elements from the speci-
fied VDA Tool. This keyword supersedes the grael_name parameter.

Discussion

To obtain a list of graphical elements associated with a given VDA Tool, use
TmEnumerateGraels.

NOTE If you specify the All keyword, you will delete all the graphical elements
plus any other items that were defined for the VDA Tool. Use TmEnumerateGraels
to return the list of all items to determine if the All keyword is appropriate.

Example
TmDelGrael, ’WzPlot_0’, ’RECTANGLE_1’

See Also

TmAddGrael, TmEnumerateGraels, TmGetGraelRectangle,
TmGetUniqueGraelName, TmSetGraelRectangle

480 Application Developer’s Guide

TmDelSelectedGraels Procedure
Deletes a graphical element from the list of selected graphical elements.

Usage

TmDelSelectedGraels, tool_name, grael_name

Parameters

tool_name — A string containing the unique name of a VDA Tool from which the
graphical element is to be removed.

grael_name — A string containing the name of the graphical element to remove.

Keywords

All — When specified and nonzero, deletes all selected graphical elements from
the specified VDA Tool. This keyword supersedes the grael_name parameter.

Discussion

The graphical element selection list enables graphical elements to be cut, copied,
pasted, and deleted from VDA Tools. To get a list of graphical elements associated
with a given VDA Tool, use the TmEnumerateGraels function. To see which graph-
ical elements are currently on the selection list, use TmEnumerateSelectedGraels.

NOTE If you specify the All keyword, you will delete all the graphical elements
plus any other items that were defined for the VDA Tool. Use
TmEnumerateSelectedGraels to return the list of all items to determine if the All
keyword is appropriate.

Example

The first command returns all of the graphical elements currently on the selection
list for the VDA Tool WzPlot_0. Then, one of the elements, RECTANGLE_0 is
deleted from the list.

PRINT, TmEnumerateSelectedGraels(’WzPlot_0’)
RECTANGLE_0 LINE_0 LINE_1

TmDelSelectedGraels, ’WzPlot_0’, ’RECTANGLE_0’

TmEnumerateGraelMethods Function 481

PRINT, TmEnumerateSelectedGraels(’WzPlot_0’)
LINE_0 LINE_1

See Also

TmAddSelectedGrael, TmEnumerateSelectedGraels

TmEnumerateGraelMethods Function
Obtain a list of all the methods set for a graphical element in a specified VDA Tool.

Usage

methods = TmEnumerateGraelMethods(tool_name, grael_name)

Parameters

tool_name — A string containing the unique name of a VDA Tool.

grael_name — A string containing the name of a graphical element associated
with the VDA Tool.

Returned Value

methods — A string array containing the names of all the methods registered for a
graphical element in the specified VDA Tool.

Keywords

None.

Example

This command lists all the methods associated with an axis. By convention, meth-
ods always begin with “TM_”.

PRINT, TmEnumerateGraelMethods(’WzPlot_0’, ’AXIS_0’)
TM_HIGHLIGHT TM_DIALOG TM_CODEGEN TM_STARTMOVE TM_CONVERT
TM_DISPLAY TM_SELECTGRAEL TM_UNHIGHLIGHT TM_RELOCATE

See Also

TmExecuteGraelMethod, TmGetGraelMethod, TmSetGraelMethod

482 Application Developer’s Guide

TmEnumerateGraels Function
Returns all the graphical elements that were set for a given VDA Tool.

Usage

grael_list = TmEnumerateGraels(tool_name)

Parameters

tool_name — A string containing the unique name of a VDA Tool.

Returned Value

grael_list — An array of strings containing the graphical elements that were set for
the given VDA Tool.

Keywords

None.

Discussion

Before you can manipulate a graphical element, you must know its name. Use this
function to return the names of graphical elements in a VDA Tool. With the name,
you can use functions like TmGetAttribute, TmSetAttribute, TmSetGraelMethod,
and other routines that perform graphical element operations.

Example

List the graels currently registered with the given VDA Tool.

PRINT, TmEnumerateGraels(’WzPlot_0’)
TM_WINDOWID TM RECTANGLE LINE AXIS LEGEND TEXT MENUBAR
BUTTONBAR MESSAGE TM_HELP AXIS_0 AXIS_1 TM_DRAWING
RECTANGLE_2 LINE_1 CIRCLE RECTANGLE_0 RECTANGLE_1 LINE_0
LINE_2

See Also

TmAddGrael, TmDelGrael, TmGetGraelRectangle,
TmGetUniqueGraelName, TmSetGraelRectangle

TmEnumerateSelectedGraels Function 483

TmEnumerateSelectedGraels Function
Obtains a list of graphical elements or other items currently on the graphical items
selection list.

Usage

graels = TmEnumerateSelectedGraels(tool_name)

Parameters

tool_name — A string containing the unique name of a VDA Tool.

Returned Value

graels — A string array containing all the names of the graphical elements or other
items on the selection list for the VDA Tool.

Keywords

None.

Discussion

The graphical element selection list enables graphical elements to be cut, copied,
pasted, and deleted from VDA Tools. To get a list of graphical elements associated
with a given VDA Tool, use the TmEnumerateGraels function.

Example

The following commands add graphical elements to the selection list and then print
out the contents of the list.

PRINT, TmEnumerateGraels(’WzPlot_0’)
TM_WINDOWID TM RECTANGLE LINE AXIS LEGEND TEXT MENUBAR
BUTTONBAR MESSAGE XX TM_HELP AXIS_0 AXIS_1 TM_DRAWING RECTANGLE_0
LINE_1 GROUP_0

TmAddSelectedGrael, ’WzPlot_0’, ’RECTANGLE_0’

PRINT, TmEnumerateSelectedGraels(’WzPlot_0’)
RECTANGLE_0

484 Application Developer’s Guide

See Also

TmAddSelectedGrael, TmDelSelectedGraels

TmExecuteGraelMethod Procedure
Executes a method for a graphical method based on the method name.

Usage

TmExecuteGraelMethod, tool_name, grael_name, method_name

Parameters

tool_name — A string containing the unique name of a VDA Tool.

grael_name — A string containing the name of the graphical element.

method_name — A string containing the name of the method to execute. e.g.,
TM_DISPLAY.

Keywords

None.

Discussion

If the named method was not previously registered with the Tools Manager, no
action is taken.

Example
TmSetGraelMethod, ’WzPlot_0’, ’LINE_0’, ’TM_DISPLAY’, $

’TmLine’

TmExecuteGraelMethod, ’WzPlot_0’, ’LINE_0’, ’TM_DISPLAY’

See Also

TmEnumerateGraelMethods, TmGetGraelMethod, TmSetGraelMethod

TmGetGraelMethod Function 485

TmGetGraelMethod Function
Obtains the data structure for the specified method.

Usage

name = TmGetGraelMethod(tool_name, grael_name, method_name)

Parameters

tool_name — A string containing the unique name of a VDA Tool.

grael_name — A string containing the name of the graphical element.

method_name — A string containing the name of the method to execute, e.g.,
TMDISPLAY.

Returned Value

name — The data structure of the method.

Keywords

None.

Discussion

The method data structure contains two tags: the name of the method procedure
and a variable for user data.

Example

This command returns the name of the procedure that is called (TmLine) when the
TM_DISPLAY method is called for the graphical element LINE_0.

INFO, /Full, TmGetGraelMethod(’WzPlot_0’, ’LINE_0’, ’TM_DISPLAY’)
{ TmLine{}}

See Also

TmEnumerateGraelMethods, TmExecuteGraelMethod, TmSetGraelMethod

486 Application Developer’s Guide

TmGetGraelRectangle Function
Returns the rectangular boundary of a graphical element.

Usage

rect = TmGetGraelRectangle(tool_name, grael_name)

Parameters

tool_name — A string containing the unique name of a VDA Tool.

grael_name — A string containing the name of the graphical element.

Returned Value

rect — A four-element array defining the endpoints of a rectangle in device coor-
dinates: [x1 y1 x2 y2].

Keywords

None.

Discussion

The rectangular boundary is a region in which the user can click to select the graph-
ical element. This rectangle is also the highlighted border that indicates when a
graphical element has been selected.

Example

First, the graphical elements for a VDA Tool are enumerated. Then, the coordinates
of the bounding rectangle for one of the graphical elements is returned by
TmGetGraelRectangle.

PRINT, TmEnumerateGraels(’WzPlot_0’)
TM_WINDOWID TM RECTANGLE LINE AXIS LEGEND TEXT MENUBAR
BUTTONBAR MESSAGE XX TM_HELP AXIS_0 AXIS_1 TM_DRAWING

PRINT, TmGetGraelRectangle(’WzPlot_0’, ’AXIS_0’)
50.0025 38.0034 492.003 58.0034

TmGetUniqueGraelName Function 487

See Also

TmAddGrael, TmDelGrael, TmEnumerateGraels, TmGetUniqueGraelName,
TmSetGraelRectangle

TmGetUniqueGraelName Function
Obtains a unique name based on the name of the specified graphical element.

Usage

name = TmGetUniqueGraelName(tool_name, grael_name)

Parameters

tool_name — A string containing the unique name of a VDA Tool.

grael_name — A string containing the name of the graphical element.

Returned Value

name — A string containing a unique name for the graphical element.

Keywords

None.

Discussion

Use this function to get a unique graphical element name before using the
TmAddGrael function.

The unique name returned by this function is a variation on the name provided by
the grael_name input parameter (i.e., LINE_2, if LINE_0 and LINE_1 already
exist).

Example
PRINT, TmGetUniqueGraelName(’WzPlot_0’, ’LINE’)

LINE_0

488 Application Developer’s Guide

See Also

TmAddGrael, TmDelGrael, TmEnumerateGraels, TmGetGraelRectangle,
TmSetGraelRectangle

TmGroupGraels Function
Groups a number of selected graphical elements as one graphical element with a
unique name.

Usage

name = TmGroupGraels(tool_name, grael_names)

Parameters

tool_name — A string containing the unique name of a VDA Tool.

grael_names — An array of strings containing graphical element names for graph-
ical elements associated with the specified VDA Tool.

Returned Value

name — A string containing a unique name for the group of graphical elements,
e.g., GROUP_01.

Keywords

None.

Discussion

This function is called when the Edit=>Group command is called from the graph-
ical menu.

Example

The first command lists all the graphical elements in a VDA Tool. The
TmGroupGraels function is used to group several of the graphical elements — two
rectangles and two lines — that have been added to the plot window. The function

TmLegend Procedure 489

returns a unique name for the group. In the plot window, the grouped items are sur-
rounded by a highlighted border.

PRINT, TmEnumerateGraels(’WzPlot_0’)
TM_WINDOWID TM RECTANGLE LINE AXIS LEGEND TEXT MENUBAR
BUTTONBAR MESSAGE XX TM_HELP AXIS_0 AXIS_1 TM_DRAWING RECTANGLE_0
RECTANGLE_1 RECTANGLE_2 LINE_0 LINE_1 LINE_2

grp = TmGroupGraels(’WzPlot_0’, [’RECTANGLE_0’, $
’RECTANGLE_1’, ’LINE_0’, ’LINE_2’])

PRINT, grp
GROUP_0

See Also

TmUngroupGraels

TmLegend Procedure
Adds a legend to a VDA Tool. The exact size and position of the legend is deter-
mined interactively by the user.

Usage

TmLegend, tool_name

Parameters

tool_name — A string containing the unique name of a VDA Tool.

Keywords

None.

Discussion

TmLegend is a graphical element (GRAEL) routine. GRAELs are predefined
graphics routines used by VDA Tools. These routines allow you to add, configure,
and remove graphical elements in the VDA Tool display area. The standard set of
GRAELs includes axes, text, bitmaps, legends, lines, and rectangles. This standard
set is accessible from the standard VDA Tool menu bar and button bar, which are
provided by the VDA Utility routines WoMenuBar and WoButtonBar.

490 Application Developer’s Guide

To draw a legend, the user presses and drags MB1 to define the legend border.

Example

The following example code is a callback routine for a menu bar. This callback exe-
cutes TmLegend in response to a menu selection.

PRO CreateLegendCB, wid, index

 tool_name = GetMenuBarToolName(wid)

 toggle_buttons = [’dataselect’, ’graelselect’, ’text’, $
’line’, ’rectangle’, ’legend’]

 buttons_up = [0, 0, 0, 0, 0, 0]

 WoButtonBarSet, tool_name, toggle_buttons, buttons_up

 WoButtonBarSet, tool_name, ’legend’, 1

 WoAddMessage, tool_name, ’MSG_LegendCreate’, /Clear

WoAddStatus, tool_name, ’MSG_LegendCreateStatus’, Item=’STATUS2’

 TmLegend, tool_name

END

See Also

TmAxis, TmBitmap, TmLine, TmRect, TmText

TmLine Procedure
Adds a line to a VDA Tool. The exact length and position of the line is determined
interactively by the user.

Usage

TmLine, tool_name

Parameters

tool_name — A string containing the unique name of a VDA Tool.

Keywords

None.

TmLine Procedure 491

Discussion

TmLine is a graphical element (GRAEL) routine. GRAELs are predefined graph-
ics routines used by VDA Tools. These routines allow you to add, configure, and
remove graphical elements in the VDA Tool display area. The standard set of
GRAELs includes axes, text, bitmaps, legends, lines, and rectangles. This standard
set is accessible from the standard VDA Tool menu bar and button bar, which are
provided by the VDA Utility routines WoMenuBar and WoButtonBar.

To create a line, the user presses and drags MB1 to define the endpoints.

Example

The following example code is a callback routine for a menu bar. This callback exe-
cutes TmLine in response to a menu selection.

PRO CreateLineCB, wid, index

 tool_name = GetMenuBarToolName(wid)

 toggle_buttons = [’dataselect’, ’graelselect’, ’text’, $
’line’, ’rectangle’, ’legend’]

 buttons_up = [0, 0, 0, 0, 0, 0]

 WoButtonBarSet, tool_name, toggle_buttons, buttons_up

 WoButtonBarSet, tool_name, ’line’, 1

 WoAddMessage, tool_name, ’MSG_LineCreate’, /Clear

 WoAddStatus, tool_name, ’MSG_LineCreateStatus’, Item=’STATUS2’

 TmLine, tool_name

END

See Also

TmAxis, TmBitmap, TmLegend, TmRect, TmText

492 Application Developer’s Guide

TmRect Procedure
Adds a rectangle to a VDA Tool. The exact size and position of the rectangle is
determined interactively by the user.

Usage

TmRect, tool_name

Parameters

tool_name — A string containing the unique name of a VDA Tool.

Keywords

None.

Discussion

TmRect is a graphical element (GRAEL) routine. GRAELs are predefined graph-
ics routines used by VDA Tools. These routines allow you to add, configure, and
remove graphical elements in the VDA Tool display area. The standard set of
GRAELs includes axes, text, bitmaps, legends, lines, and rectangles. This standard
set is accessible from the standard VDA Tool menu bar and button bar, which are
provided by the VDA Utility routines WoMenuBar and WoButtonBar.

To create a rectangle, the user presses and drags MB1 to define the corners of the
rectangle.

Example

The following example code is a callback routine for a menu bar. This callback exe-
cutes TmRect in response to a menu selection.

PRO CreateBoxCB, wid, index

 tool_name = GetMenuBarToolName(wid)

 toggle_buttons = [’dataselect’, ’graelselect’, ’text’, $
’line’, ’rectangle’, ’legend’]

 buttons_up = [0, 0, 0, 0, 0, 0]

 WoButtonBarSet, tool_name, toggle_buttons, buttons_up

 WoButtonBarSet, tool_name, ’rectangle’, 1

TmSetGraelMethod Procedure 493

 WoAddMessage, tool_name, ’MSG_RectCreate’, /Clear

 WoAddStatus, tool_name, ’MSG_RectCreateStatus’, $
Item=’STATUS2’

 TmRect, tool_name

END

See Also

TmAxis, TmBitmap, TmLegend, TmLine, TmText

TmSetGraelMethod Procedure
Sets the name of the method procedure for a given method name and graphical
element.

Usage

TmSetGraelMethod, tool_name, grael_name, method_name, method_value

Parameters

tool_name — A string containing the unique name of a VDA Tool.

grael_name — A string containing the name of the graphical element.

method_name — A string containing the name of the method to set for the speci-
fied graphical element (i.e., TM_DISPLAY).

value — A string containing the name of the method procedure (for example,
’DrawAxis’).

Keywords

user_data — A string containing data associated with the method.

Example
TmAddGrael, ’WzPlot_0’, ’CIRCLE’

; Add a new graphical element called “CIRCLE” to a VDA Tool.

494 Application Developer’s Guide

TmSetGraelMethod, ’WzPlot_0’, ’CIRCLE’, ’TMDISPLAY’, ’DrawCircle’

; Set a method for the new graphical element. This method calls a procedure,
; DrawCircle, which performs the graphics operations to draw circles in the plot
; window.

See Also

TmEnumerateGraelMethods, TmExecuteGraelMethod, TmGetGraelMethod

TmSetGraelRectangle Procedure
Sets the selection rectangle for a graphical element, or a set of graphical elements.

Usage

TmSetGraelRectangle, tool_name, grael_name, rectangle

Parameters

tool_name — A string containing the unique name of a VDA Tool.

grael_name — A string containing the name of the graphical element.

rectangle — A four-element array defining the endpoints of a rectangle in device
coordinates: [x1 y1 x2 y2].

Keywords

None.

Discussion

The rectangular boundary is a region in which the user can click to select the graph-
ical element. This rectangle is also the highlighted border that indicates when a
graphical element has been selected.

Use this function to reset the size of a graphical element’s boundary rectangle after
the graphical element has been resized or moved.

Example

The following commands reset the bounding box for an axis.

TmText Procedure 495

rect = [50, 227, 492, 247]

TmSetGraelRectangle, ’WzPlot_0’, ’AXIS_0’, rect

See Also

TmAddGrael, TmDelGrael, TmEnumerateGraels, TmGetGraelRectangle,
TmGetUniqueGraelName

TmText Procedure
Adds text to a VDA Tool. The position of the text and the text itself are determined
interactively by the user.

Usage

TmText, tool_name

Parameters

tool_name — A string containing the unique name of a VDA Tool.

Keywords

None.

Discussion

TmText is a graphical element (GRAEL) routine. GRAELs are predefined graphics
routines used by VDA Tools. These routines allow you to add, configure, and
remove graphical elements in the VDA Tool display area. The standard set of
GRAELs includes axes, text, bitmaps, legends, lines, and rectangles. This standard
set is accessible from the standard VDA Tool menu bar and button bar, which are
provided by the VDA Utility routines WoMenuBar and WoButtonBar.

To add text, the user clicks MB1 where the text is to start, enters the text, and
presses <Return> when finished.

496 Application Developer’s Guide

Embedded Functions in Text Graels

You can embed PV-WAVE functions inside a string used in a text grael (a graphical
element that includes the VDA Tools Manager function TmText). This feature is
useful for embedding a calculated value to a string. When the string is displayed,
the function is executed and the result is inserted into the string.

The format for embedded functions is:

%%FUNCTION(args):(FORMAT)%%

where:

FUNCTION — Any valid PV-WAVE function that returns a scalar value. All vari-
ables used by the function, including variables used as values for keywords, must
exist at the $MAIN$ level of PV-WAVE.

FORMAT — A valid FORTRAN-style format. For detailed information on output
formats, see Appendix A, FORTRAN and C Format Strings, in the PV-WAVE Pro-
grammer’s Guide.

Example 1

The following example code is a callback routine for a menu bar. This callback exe-
cutes TmText in response to a menu selection.

PRO CreateTextCB, wid, index

tool_name = GetMenuBarToolName(wid)

toggle_buttons = [’dataselect’, ’graelselect’, ’text’, $
’line’, ’rectangle’, ’legend’]

buttons_up = [0, 0, 0, 0, 0, 0]

WoButtonBarSet, tool_name, toggle_buttons, buttons_up

WoButtonBarSet, tool_name, ’text’, 1

WoAddMessage, tool_name, ’MSG_TextCreate’, /Clear

WoAddStatus, tool_name, ’MSG_TextCreateStatus’, Item=’STATUS2’

TmText, tool_name

END

Example 2

Assume that the variable my_var exists at $MAIN$. When the following string is
displayed in a text grael, the value of the AVG function is calulated and displayed
in the specified format.

TmTopGrael Procedure 497

The average of my_var is: %%AVG(my_var):(F8.3)%%

You can use additional arguments and keywords, as long as all named parameters
exist at $MAIN$. You can also use expressions as parameters, as follows:

The median of DIST(200) is: %%MEDIAN(DIST(200))%%

See Also

TmAxis, TmBitmap, TmLegend, TmLine, TmRect

TmTopGrael Procedure
Sets the specified graphical element to be at the top of the display list (displayed in
front of other graphical elements).

Usage

TmTopGrael, tool_name, grael_name

Parameters

tool_name — A string containing the unique name of a VDA Tool.

grael_name — A string containing the name of the graphical element to move to
the top.

Keywords

None.

Discussion

This function is called by the Edit=>Top command on the graphical VDA Tools.
A list of graphical elements for a given VDA Tool can be obtained with
TmEnumerateGraels.

Example
TmTopGrael, ’WzPlot_0’, ’RECTANGLE_1’

498 Application Developer’s Guide

See Also

TmBottomGrael

TmUngroupGraels Procedure
Ungroups a group of graphical elements.

Usage

TmUngroupGraels, tool_name, group_name

Parameters

tool_name — A string containing the unique name of a VDA Tool.

group_name — A string containing the name of a graphical element group.

Keywords

None.

Discussion

The group_name parameter is a string returned by the TmGroupGraels function.

Example

This example simply groups and then ungroups some graphical elements.

grp = TmGroupGraels(’WzPlot_0’, [’RECTANGLE_0’, $
’RECTANGLE_1’, ’LINE_0’, ’LINE_2’])

PRINT, grp
GROUP_0

TmUngroupGraels, ’WzPlot_0’, ’GROUP_0’

See Also

TmGroupGraels

499

CHAPTER

11

VDA Tools Utilities (Wo)
This chapter describes the VDA Tools Utilities (Wo) routines. This set of conve-
nience routines help you to develop a VDA Tool user interface quickly and
efficiently.

WoAddButtons Procedure
Adds a bank of buttons to a button bar.

Usage

WoAddButtons, toolname, buttons

Input Parameters

toolname — (string) Specifies the unique name of the VDA Tool to which the but-
ton bar is attached.

buttons — An unnamed structure containing the button definitions.

Keywords

Measure — Specifies the number of columns of buttons (for a vertical box) or rows
(for a horizontal box).

Radio — If nonzero, the buttons have a “one of many” behavior.

500 Application Developer’s Guide

Sensitive — Specifies an array of initial sensitivity settings for the buttons. A value
of 0 makes the button insensitive; 1 makes the button sensitive. (Default: All but-
tons are sensitive.)

Vertical — When nonzero, creates a vertically aligned column of buttons.

Discussion

An unnamed structure has the following general definition:

x = {, tag_name1: tag_def1, tag_namen: tag_defn}

The following tag names and tag definitions can be used in the unnamed structure
used to define buttons:

• LAYOUT_NAME: 'name' — Specifies the name of the row/column layout
used to organize the buttons.

• DESCRIPTOR: 'name' — Specifies the descriptor name for the button. A
descriptor is a string used to identify a button. This string is also used as the
button’s widget ID.

• CALLBACK: 'name' — Specifies the name of the callback routine for the
button.

• STATUS_CALLBACK: 'name' — Specifies the name of the routine that
prints the name of the button when the pointer passes over the button.

• USERDATA: variable — Specifies a variable to pass to the callback when the
button is pressed.

• INSENSITIVE_PIXMAP: 'pathname'— Specifies the full pathname of the
insensitive pixmap for the button.

• PIXMAP: 'pathname' — Specifies the full pathname of the sensitive pixmap
for the button.

For an example of an unnamed structure of button definitions, see the file
wographicsbuttons.pro in:

(UNIX) <wavedir>/lib/vdatools

(OpenVMS) <wavedir>:[LIB.VDATOOLS]

(Windows) <wavedir>\lib\vdatools

Where <wavedir> is the main PV-WAVE directory.

WoAddButtons Procedure 501

Example

The following code shows how to add custom buttons to the standard button bar.
First, button callbacks are defined, and then a structure is created to define two but-
tons. Finally, WoAddButtonBar is used to add the buttons to the standard button
bar, WoButtonBarSetSensitivity is used to set the sensitivity of one of the buttons,
and WoButtonBarSet is used to press one of the buttons.

PRO Button0StatusCB, wid, tool_name, event

 WoAddStatus, tool_name, ’MSG_Button0Status’

END

PRO Button1StatusCB, wid, tool_name, event

 WoAddStatus, tool_name, ’MSG_Button0Status’

END

PRO Button0CB, wid, tool_name

 print, ’Button 0 pressed in tool ’ + tool_name

 WoAddMessage, tool_name, ’MyTool_Button0’, /Clear

END

PRO Button1CB, wid, tool_name

 print, ’Button 1 pressed in tool ’ + tool_name

 WoAddMessage, tool_name, ’MyTool_Button0’, /Clear

END

 ...

; Define the button bar structure.

 pixmap_directory=’~user/Pixmaps/’

 MyButtons = $

 {, $

 LAYOUT_NAME: ’MyButtons’, $

 DESCRIPTOR: ’MyButton_0’, $

 CALLBACK: ’Button0CB’, $

 STATUS_CALLBACK: ’Button0StatusCB’, $

 INSENSITIVE_PIXMAP: pixmap_dir + ’button0x.pm’, $

 PIXMAP: pixmap_dir + ’button0.pm’, $

 DESCRIPTOR: ’MyButton_1’, $

CALLBACK: ’Button1CB’, $

STATUS_CALLBACK: ’Button1StatusCB’, $

502 Application Developer’s Guide

INSENSITIVE_PIXMAP: pixmap_dir + ’button1x.pm’, $

PIXMAP: pixmap_dir + ’button1.pm’ $

 }

; Create the standard graphics button bar.

tb = WoButtonBar(layout , tool_name, Top=bar, /Graphics, $
/Left, /Right)

; Add the additional buttons.

WoAddButtons, tool_name, MyButtons

; Make the second button insensitive.

WoButtonBarSetSensitivity, tool_name, ’MyButton_1’, 0

; Push the first button.

WoButtonBarSet, tool_name, ’MyButton_0’, 1

...

See Also

WoButtonBar, WoButtonBarSet, WoButtonBarSetSensitivity

WoAddMessage Procedure
Adds a message to a message area created by WoMessage.

Usage

WoAddMessage, toolname, message_key

Input Parameters

toolname — (string) Specifies the unique name of the VDA Tool to which the mes-
sage area is attached.

message_key — A string used to identify a message in a string resource file.

Keywords

Clear — If nonzero, clears the message area before displaying the message.
(Default: Append the message after the currently displayed messages.)

Message — Specifies a string containing a message to display in the message area.

WoAddStatus Procedure 503

Discussion

The WoBuildResourceFilename function is used to return the directory in which
string resources are stored.

NOTE We recommend that you use the Message keyword only if absolutely nec-
essary. In general, “hard coding” messages with this keyword impedes your ability
to customize or internationalize your application.

Example

For an example that uses WoAddMessage, see WoMessage.

See Also

WoMessage

WoAddStatus Procedure
Display a message in the status bar of a VDA Tool.

Usage

WoAddStatus, toolname, status_key

Input Parameters

toolname — (string) Specifies the unique name of the VDA Tool to which the sta-
tus bar is attached.

status_key — A string used to identify a message in a string resource file.

Keywords

Status — Specifies a string containing a status message to display in the status bar.

Discussion

The WoBuildResourceFilename function is used to return the directory in which
string resources are stored.

504 Application Developer’s Guide

NOTE We recommend that you use the Status keyword only if absolutely neces-
sary. In general, “hardcoding” messages with this keyword impedes your ability to
internationalize your application.

Example

For an example that uses WoAddStatus, see WoStatus.

See Also

WoStatus, WoMessage

WoBuildResourceFilename Function
Returns the full path name for a specified resource file.

Usage

resource_file = WoBuildResourceFilename(file)

Returned Value

file — The name of the resource file.

Keywords

Appdir — A string that specifies the application directory name. This is the direc-
tory in which the application searches for resource files, string resource files, and
icon files. See the Discussion. (Default: vdatools)

Subdir — A string specifying a resource file subdirectory. See the Discussion.

Discussion

UNIX USERS By default, the function looks for file first in directories specified
by the environment variable WAVE_RESPATH. This environment variable is a
colon separated list of directories, similar to the PV-WAVE WAVE_PATH environ-
ment variable. If not found in a WAVE_RESPATH directory, the directory
$WAVE_DIR/xres/!Lang/vdatools is searched, where !Lang represents the
value of the !Lang system variable in PV-WAVE.

WoBuildResourceFilename Function 505

OpenVMS USERS By default, the function looks for file first in directories spec-
ified by the logical WAVE_RESPATH. This logical is a comma separated list of
directories and text libraries, similar to the OpenVMS WAVE_PATH logical. If not
found in a WAVE_RESPATH directory, the directory
WAVE_DIR:[XRES.!Lang.VDATOOLS] is searched, where !Lang represents the
value of the !Lang system variable in PV-WAVE.

Windows USERS By default, the function looks for file first in directories spec-
ified by the environment variable WAVE_RESPATH. This environment variable is
a semicolon separated list of directories, similar to the PV-WAVE WAVE_PATH
environment variable. If not found in a WAVE_RESPATH directory, the directory
%WAVE_DIR%\xres\!Lang\vdatools is searched, where !Lang represents the
value of the !Lang system variable in PV-WAVE.

If Subdir is specified, the file is searched for in:

(UNIX) <wavedir>/xres/subdir/vdatools

(OpenVMS) <wavedir>:[XRES.SUBDIR.VDATOOLS]

(Windows) <wavedir>\xres\subdir\vdatools

Where <wavedir> is the main PV-WAVE directory.

If Appdir is specified, the application searches for resources in the following
directory:

(UNIX) <wavedir>/xres/!Lang/appdir

(OpenVMS) <wavedir>:[XRES.!Lang.APPDIR]

(Windows) <wavedir>\xres\!Lang\appdir

Where <wavedir> is the main PV-WAVE directory.

If Subdir and Appdir are specified, the application searches for resources in the fol-
lowing directory:

(UNIX) <wavedir>/xres/subdir/appdir

(OpenVMS) <wavedir>:[XRES.SUBDIR.APPDIR]

(Windows) <wavedir>\xres\subdir\appdir

Where <wavedir> is the main PV-WAVE directory.

If the file is not already in the resource database, the full path name is returned.

506 Application Developer’s Guide

Example

The following commands are taken from the code for the WzContour VDA Tool.
The full path name of the resource file for WzContour is returned and is passed to
the Resource keyword of WwInit.

...

resource_file = WoBuildResourceFilename(’wzcontour.ad’)

top = WwInit(’WzContour’, ’VDATools’, layout, ’WoDestroyCB’,$
Shell_name=’WzContour’, Layout_name=’toolArea’, $
Title=unique_name, /Form, ConfirmClose=’WoConfirmClose’, $
Resource=resource_file, Userdata=unique_name)

...

See Also

WoLoadResources, WoLoadStrings, WwInit

For information on environment variables and logicals used with PV-WAVE, see
the PV-WAVE Programmer’s Guide.

WoButtonBar Function
Creates a predefined, two-row button bar that can be included in a VDA Tool.

Usage

bb_parent = WoButtonBar(parent, toolname, [buttons])

Input Parameters

parent — Specifies the widget ID of the parent of the button bar (long). This is the
ID of the row/column container that holds the row/column container with the
drawn buttons. (See the Discussion.)

toolname — (string) Specifies the unique name of the VDA Tool to which the but-
ton bar is to be attached.

buttons — (optional) Specifies an unnamed structure containing the button defini-
tions. This parameter is not needed if the Graphics keyword is specified. See the
Discussion for more information.

WoButtonBar Function 507

Returned Value

bb_parent — The parent widget ID of the bank of buttons (long). This is the ID of
the row/column container that holds the drawn buttons. (See the Discussion.)

Keywords

Graphics — If nonzero, places a set of predefined buttons in the VDA Tool. See
the Discussion section for more information.

Measure — Specifies the number of columns of buttons (for a vertical box) or rows
(for a horizontal box).

Position — A two-element array specifying the x, y coordinates of the buttonbar
inside the bulletin board widget. (Default: [0,0])

Radio — If nonzero, causes the buttons to behave like radio buttons, where only
one button can be selected at a time.

Sensitive — A scalar or array specifying the initial sensitivity of the button or but-
tons. A value of 0 makes the button insensitive; 1 makes the button sensitive. Use
WoButtonBarSetSensitivity to change the sensitivity after the buttons are created.

Spacing — Specifies the amount of space in pixels between buttons. The default is
0.

Vertical — When nonzero, creates a vertically aligned column of buttons.

Attachment Keywords

Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the button bar is attached to the top of the specified widget. If no widget ID
is specified (for example, /Bottom), then the bottom of the button bar is attached
to the bottom of the parent widget.

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the button bar is attached to the right side of the specified widget. If no widget ID
is specified (for example, /Left), then the left side of the button bar is attached to
the left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the button bar is attached to the left side of the specified widget. If no widget ID
is specified (for example, /Right), then the right side of the button bar is attached
to the right side of the parent widget.

Top — If a widget ID is specified (for example, Top=wid), then the top of the but-
ton bar is attached to the bottom of the specified widget. If no widget ID is specified

508 Application Developer’s Guide

(for example, /Top), then the top of the button bar is attached to the top of the par-
ent widget.

Discussion

The standard button bar is created as a set of drawn buttons inside a row/column
container, which is placed inside another row/column container widget. The use of
two row/column containers allows a standard button bar to be created that has mul-
tiple banks of buttons where each bank can have unique spacing and behavior (e.g.,
radio buttons).

Using the Standard Button Bar

If the Graphics keyword is specified, a predefined set of standard buttons is pro-
vided automatically. These predefined buttons are equipped with functional
callbacks. If you choose to use the predefined set of buttons in your application,
you do not need to modify the underlying structure of the buttons or the callbacks.
Both the predefined callbacks and the underlying button structures are defined in
files in the vdatools subdirectory of the Standard Library:

wographicsbuttons.pro— Uses unnamed structures to define pixmaps and
callbacks for the buttons.

wographicsbuttonscb.pro — Contains the callback routines for each
button.

Using Your Own Button Bar

If you do not choose to use the standard button bar, then you can use these files as
templates for creating a customized button bar. Use the optional button parameter
to specify the unnamed structure defining the pixmaps and callbacks for the custom
button bar. For a customized button bar, you will also have to write and include
appropriate callback procedures in your application.

An unnamed structure has the following general definition:

x = {, tag_name1: tag_def1, tag_namen: tag_defn}

The following tag names and tag definitions can be used in the unnamed structure
used to define buttons.

• LAYOUT_NAME: 'name' — Specifies the name of the row/column layout
used to organize the buttons.

WoButtonBar Function 509

• DESCRIPTOR: 'name'— Specifies the a descriptor name for the button. A
descriptor is a string used to identify a button. This string is also used as the
button’s widget ID.

• CALLBACK: 'name' — Specifies the name of the callback routine for the
button.

• STATUS_CALLBACK: 'name' — Specifies the name of the routine that
prints the name of the button when the pointer passes over the button.

• USERDATA: variable — Specifies a variable to pass to the callback when the
button is pressed.

• INSENSITIVE_PIXMAP: 'pathname'— Specifies the full pathname of the
insensitive pixmap for the button.

• PIXMAP: 'pathname' — Specifies the full pathname of the sensitive pixmap
for the button.

For an example of an unnamed structure of button definitions, see the file
wographicsbuttons.pro in:

(UNIX) <wavedir>/lib/vdatools

(OpenVMS) <wavedir>:[LIB.VDATOOLS]

(Windows) <wavedir>\lib\vdatools

Where <wavedir> is the main PV-WAVE directory.

NOTE For information on how to use the functions on the standard button bar, run
one of the graphical VDA Tools, such as WzPlot, and read about the button bar in
online Help.

Example

This call to WoButtonBar is taken from the VDA Tool template file:

(UNIX) <wavedir>/lib/vdatools/wztemplate.pro

(OpenVMS) <wavedir>:[LIB.VDATOOLS]WZTEMPLATE.PRO

(Windows) <wavedir>:\lib\vdatools\wztemplate.pro

Where <wavedir> is the main PV-WAVE directory.

tb = WoButtonBar(layout, unique_name, Top=bar, /Graphics, $
/Left, /Right)

; Creates a standard button bar for a VDA Tool.

510 Application Developer’s Guide

See Also

WoButtonBarSet, WoButtonBarSetSensitivity

WoButtonBarSet Procedure
Changes the setting of a button in a button bar.

Usage

WoButtonBarSet, toolname, descriptor, setting

Input Parameters

toolname — (string) Specifies the unique name of the VDA Tool to which the but-
ton bar is attached.

descriptor — Specifies a scalar string or string array containing the descriptor of
the button or buttons to set.

setting — Specifies a scalar or array with the new setting or settings. A value of 0
unsets the button; 1 sets the button.

Keywords

None.

Discussion

If the setting parameter is a scalar, then all buttons are set to the value of setting. If
the setting parameter is an array, each button is set to its corresponding element in
setting. In other words, the first button is set to the first value in the array, the second
button to the second value, and so on. If setting is an array with fewer elements than
buttons, the extra buttons are set to 1.

A descriptor is a string used to identify a button. This string is also used as the but-
ton’s widget name. The descriptor is set in the standard button bar structure. The
standard graphics button bar is defined in the file wographicsbuttons.pro
in:

(UNIX) <wavedir>/lib/vdatools

(OpenVMS) <wavedir>:[LIB.VDATOOLS]

WoButtonBarSetSensitivity Procedure 511

(Windows) <wavedir>\lib\vdatools

Where <wavedir> is the main PV-WAVE directory.

Example

For an example that uses WoButtonBarSet, see WoAddButtons.

See Also

WoAddButtons, WoButtonBar, WoButtonBarSetSensitivity

WoButtonBarSetSensitivity Procedure
Sets the sensitivity of one or more buttons on a button bar.

Usage

WoButtonBarSetSensitivity, toolname, descriptor, sensitivity

Input Parameters

toolname — (string) Specifies the unique name of the VDA Tool to which the but-
ton bar is attached.

descriptor — Specifies a scalar string or string array containing the descriptor of
the button or buttons to set.

sensitivity — Specifies a scalar or array with the sensitivity of the button or buttons.
A value of 0 makes the button insensitive; 1 makes the button sensitive.

Keywords

None.

Discussion

If the sensitivity parameter is a scalar, then all buttons are set to the value of sensi-
tivity. If the sensitivity parameter is an array, each button is set to its corresponding
element in sensitivity. In other words, the sensitivity of the first button is set to the
first value in the array, the second button to the second value, and so on. If sensitiv-

512 Application Developer’s Guide

ity is an array with fewer elements than buttons, the extra buttons are set to 1
(insensitive).

A descriptor is a string used to identify a button. This string is also used as the but-
ton’s widget ID. The descriptor is set in the standard button bar structure. The
standard graphics button bar is defined in the file wographicsbuttons.pro
in:

(UNIX) <wavedir>/lib/vdatools

(OpenVMS) <wavedir>:[LIB.VDATOOLS]

(Windows) <wavedir>\lib\vdatools

Where <wavedir> is the main PV-WAVE directory.

Example

For an example that uses WoButtonBarSetSensitivity, see WoAddButtons.

See Also

WoAddButtons, WoButtonBar, WoButtonBarSet

WoCheckFile Function
Confirms if a file is readable or writable.

Usage

status = WoCheckFile(file)

Input Parameters

file — A string containing the name of the file to check.

Returned Value

status — If 1, the file can be used for the given operation; if 0, the file cannot be
used.

WoColorButton Function 513

Input Keywords

Read — If specified and nonzero, the function verifies that the file is readable.

Write — If specified and nonzero, the function verifies that the file is writable.

Output Keyword

FullName — Returns a string containing the expanded filename. Constructs like
~user and $ENV_VAR are expanded.

Size — Returns the size of the file in bytes.

Example

The following expression is used in the code for the VDA Tool WzExport to deter-
mine if a given file can be written to.

...

IF NOT WoCheckFile(file_name, /Write) THEN RETURN, ’’

...

WoColorButton Function
Creates a button that brings up a color table dialog box used to set colors in a VDA
Tool. The button has an associated color pixmap that reflects the currently selected
color.

Usage

widget = WoColorButton(parent)

Input Parameters

parent — Specifies the parent widget ID of the color button (long).

Returned Value

widget — The ID of the layout widget.

514 Application Developer’s Guide

Keywords
Layout_Name — Specifies a string containing the name of the container form.

Name — Specifies a string containing the name of the button.

Position — A two-element array specifying the x, y coordinates of the color button
in the bulletin board. (Default: [0,0])

Range — A 2-element integer array specifying the range of color values in the
color grid. The default range is [0, (!D.Table_Size – 1)].

Start_Value — Specifies the color index to use as the original color for the color
pixmap (integer).

Title — Specifies a string containing the title of the colortable dialog box.

Attachment Keywords
Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the button is attached to the top of the specified widget. If no widget ID is
specified (for example, /Bottom), then the bottom of the button is attached to the
bottom of the parent widget.

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the button is attached to the right side of the specified widget. If no widget ID is
specified (for example, /Left), then the left side of the button is attached to the
left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the button is attached to the left side of the specified widget. If no widget ID is
specified (for example, /Right), then the right side of the button is attached to the
right side of the parent widget.

Top — If a widget ID is specified (for example, Top=wid), then the top of the but-
ton is attached to the bottom of the specified widget. If no widget ID is specified
(for example, /Top), then the top of the button is attached to the top of the parent
widget.

Discussion

This function is used in the Attributes dialog boxes of graphical VDA Tools.

NOTE Do not use WwSetValue with the Userdata keyword on the returned widget
or on its parent widget after calling this routine. This use will cause unexpected
side-effects, because WwSetValue changes the user data for a widget and for all of
its children.

WoColorButton Function 515

Contents of the Colortable Dialog Box

The Colortable dialog box has three main parts — the color palette area, the control
area, and the action buttons.

Palette Area

An array of cells, one for each color index from the colormap. Numbers by the cor-
ners of the palette indicate the color index of the upper-left, upper-right, lower-left,
and lower-right color square in the palette.

Controls Area

Selected Color — The index number of the currently selected color in the color
table. Once a color is selected, the color pixmap next to the text field is updated.
Select a color by clicking the left mouse button on a color cell in the palette of cells,
or by entering the color’s index number in this text field and pressing <Return>.

Action Buttons

OK — Apply the selected color and exit the dialog box. Updates the color pixmap
next to the color button.

Apply — Apply the selected color, but do not exit the dialog box. Updates the color
pixmap next to the color button.

Cancel — Exit the dialog box; do not apply any color changes.

Help — Display online help on the dialog box.

Example

This example creates a color button inside a layout widget. The color button brings
up a dialog box used to edit the current plot color. The name of the color button is
specified in a resource file.

PRO OkApplyCB, wid, which

 ; ...

; Retrieve the currently selected color from the color button. The returned
; value will be an integer color index between 0 and 255.

 colorButtonWid = WwGetValue (wid, /Userdata)

 color = WoColorButtonGetValue (colorButtonWid)

 ; ...

END

516 Application Developer’s Guide

PRO ChangeColorCB, wid, which

 ; ...

; Set the color button color index. The new index should be an integer value in
; the range of the current plot colors.

 colorButtonWid = WwGetValue (wid, /Userdata)

 WoColorButtonSetValue, colorButtonWid, new_index

 ; ...

END

PRO CreateStuff

 ; ...

 top = WwInit (’example’, ’Example’, layout)

; Create a color button as a child of the layout widget. Color 5 will be
; displayed when the color button becomes visible. The title appears in the
; frame bar of the dialog that pops up when the user presses the color button.
; The button label is specified in a resource, as follows:

*line_color_button.labelString: Line Color

 colorButtonWid = WoColorButton (layout, Title = ’Line Color’, $
Name = ’line_color_button’, Start_value = 5)

 ; ...

 status = WwSetValue (top, /Display)

 WwLoop

END

See Also

WoColorButtonGetValue, WoColorButtonSetValue

WoColorButtonGetValue Function 517

WoColorButtonGetValue Function
Gets the currently selected color index from a color button created by
WoColorButton.

Usage

color = WoColorButtonGetValue(wid)

Input Parameters

wid — Specifies the widget ID returned by WoColorButton (long).

Returned Value

color — The currently selected color index (integer).

Keywords

None.

Example

See the example given for WoColorButton.

See Also

WoColorButton, WoColorButtonSetValue

518 Application Developer’s Guide

WoColorButtonSetValue Function
Sets the current color index for a color button created by WoColorButton, and
updates the color button’s color pixmap.

Usage

color = WoColorButtonSetValue(wid, color)

Input Parameters

wid — Specifies the widget ID returned by WoColorButton (long).

color — Specifies the new color index (integer).

Keywords

None.

Example

See the example given for WoColorButton.

See Also

WoColorButton, WoColorButtonGetValue

WoColorConvert Function
Convert from a long RGB value to an index into the current color table, or from an
index in the current color table to an RGB value.

Usage

result = WoColorConvert(color)

Input Parameters

color — The input RGB value or color index.

WoColorConvert Function 519

Returned Value

The returned value depends on the type of system and the keyword parameters that
are used:

Keywords

ColorToIndex — If nonzero, converts an RGB value to a color table index.

IndexToColor — If nonzero, converts a color table index to an RGB value.

Discussion

WoColorConvert ensures that a selected color (e.g., in a VDA Tool application)
looks the same on 8-bit and 24-bit dispays.

The ColorToIndex and IndexToColor keywords are mutually exclusive.

The color conversion only occurs on 24-bit systems; the original color index is
returned for other display types.

Example

The following PLOT command uses WoColorConvert to convert the plot color so
that it works properly on a 24-bit display.

color = 4

seed=2

PLOT, Randomn(seed,20), Color=WoColorConvert(color, /IndexToColor)

System and Keyword Retuned Value

8-bit systems with
either keyword

Return value is the same as the input
color value.

24-bit system with
/ColorToIndex keyword

Returns a color table index.

24-bit system with
/IndexToColor keyword

Returns a long RGB value.

520 Application Developer’s Guide

See Also

NOTE For detailed information on the following routine, please refer to the PV-
WAVE Reference.

COLOR_CONVERT

WoColorGrid Function
Creates a grid of color squares from the current color table.

Usage

widget = WoColorGrid(parent)

Input Parameters

parent — A string containing the widget ID of the parent widget.

Returned Value

widget — The widget ID of the color grid.

Keywords

Title — Specifies a string containing the title of the color grid.

Model — Specifies a string containing the color model used for the color grid
(’RGB’, ’HLS’, or ’HSV’).

Range — A 2-element integer array specifying the range of color values in the
color grid. The default range is [0, (!D.Table_Size – 1)].

Area — If present and nonzero, the drawing area widget ID is returned.

Num_Columns — An integer specifying the number of columns in the color grid.
The default configuration is a square grid, where the number of rows and columns
is equal.

Cell_Size — A 2-element integer array specifying the size of each color cell, in
pixels. The cells must be square. By default, the cells are 20-by-20 pixels.

WoColorGrid Function 521

Attachment Keywords

Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the color grid is attached to the top of the specified widget. If no widget ID
is specified (for example, /Bottom), then the bottom of the color grid is attached
to the bottom of the parent widget.

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the color grid is attached to the right side of the specified widget. If no widget ID
is specified (for example, /Left), then the left side of the color grid is attached to
the left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the color grid is attached to the left side of the specified widget. If no widget ID
is specified (for example, /Right), then the right side of the color grid is attached
to the right side of the parent widget.

Top — If a widget ID is specified (for example, Top=wid), then the top of the
color grid is attached to the bottom of the specified widget. If no widget ID is spec-
ified (for example, /Top), then the top of the color grid is attached to the top of the
parent widget.

Discussion

This function is used by the WzColorEdit VDA Tool and by the WoColorButton
function.

Example

This example code displays a color grid with a button that allows you to cycle
through different color hues.

; This is the callback that is called when the “Cycle” or “Quit” button is pressed.
; If “Cycle” is pressed, the hues in the color grid are incremented so the
; colors will change. If the “Quit” button is pressed, the shell is destroyed.

PRO ButtonCB, wid, which

 DECLARE FUNC, WoColorGridGetValue

; Get the user data that was set earlier.

cb_data = WwGetValue (wid, /Userdata)

 CASE which OF

 1: BEGIN ; Cycle

; Get the currently-displayed colors.

colors = WoColorGridGetValue (cb_data.grid, 0, $

522 Application Developer’s Guide

cb_data.num_colors)

; Add to the hues, so the colors will change. If the new values are greater
; than 360, set them back to a reasonable value by subtracting 360.

new_hues = colors(0, *) + cb_data.num_colors

 too_big_indices = WHERE(new_hues GE 360)

 ndim_too_big = SIZE(too_big_indices, /Ndim)

 IF ndim_too_big GT 0 THEN $

 new_hues(too_big_indices) = $
new_hues(too_big_indices) - 360

 colors(0, *) = new_hues

; Change the colors displayed in the color grid.

WoColorGridSetValue, cb_data.grid, 0, colors

 END

 2: BEGIN ; Quit

 status = WwSetValue (cb_data.top, /Close)

 END

 ENDCASE

END

; This procedure demonstrates the use of the WoColorGrid,
; WoColorGridSetValue, and WoColorGridGetValue functions. It displays a
; shell window containing a color grid, and allows the user to cycle the color
; hues by pressing the “Cycle” button.

PRO WoColorGrid_test

 DECLARE FUNC, WoColorGrid

; Load the bottom of the color table with interesting colors.

tek_color

; We’ll display 20 colors in the color grid.

num_colors = 20

; Initialize Wave Widgets, and create the color grid and the push buttons.
; Note that we’re using HLS as the color model for the color grid.

top = WwInit (’WoColorGrid_test’, ’wocolorgrid_test’, $
layout, /Vertical, title = ’Color Grid Test’)

 grid = WoColorGrid (layout, Title = ’Color Grid’, $
Model = ’HLS’, $
Range = [0, (num_colors - 1)])

 button_wid = WwButtonBox (layout, [’Cycle’, ’Quit’], $
’ButtonCB’, buttons = buttons)

; Attach user data to the buttons, so we can access it from the button callback.

WoColorGridGetValue Function 523

cb_data = {, top: top, grid: grid, num_colors: num_colors}

 FOR i = 0, (N_ELEMENTS(buttons)-1) DO BEGIN

 status = WwSetValue (buttons(i), Userdata = cb_data)

 ENDFOR

; Display the color grid.

status = WwSetValue (top, /Display)

 WwLoop, /NoBlock

END

See Also

WoColorGridGetValue, WoColorGridSetValue

WoColorGridGetValue Function
Gets the color indices for a range of colors in a color grid.

Usage

colors = WoColorGridGetValue(wid, index, num_values)

Input Parameters

wid — Specifies the widget ID returned by WoColorGrid (long).

index — The first color index in the range of colors to be returned.

num_values — The number of color values to return.

Returned Value

colors — A 2D array of size 3-by-n, where n is either num_values or the number
of color indices to the end of the color grid.

Keywords

None.

524 Application Developer’s Guide

Discussion

The color values returned will be either RGB, HLS, or HSV values, depending on
the currently active color model.

Example

See the example for WoColorGrid.

See Also

WoColorGrid, WoColorGridSetValue

WoColorGridSetValue Procedure
Sets the color indices for a range of colors in the color grid.

Usage

WoColorGridSetValue, wid, index, color

Input Parameters

wid — Specifies the widget ID returned by WoColorGrid (long).

index — The first color index in the range of colors to be set.

colors — An array of color table values from the currently active color model. The
array structure must be one of the following:

A 3-element array if a single color is being set.

A 2D array of size 3-by-n, where n is the number of color values to set.

Keywords

None.

Example

See the example for WoColorGrid.

WoColorWheel Function 525

See Also

WoColorGrid, WoColorGridGetValue

WoColorWheel Function
Creates a color wheel that can be used to modify a single color in the current color
table.

Usage

wid = WoColorWheel(tool_name, color_index, value_changed_cb)

Parameters

tool_name — A string containing the unique name of a VDA Tool.

color_index — The index of the color to display in the color wheel.

value_changed_cb — A string containing the name of a callback procedure to call
when the color value changes.

Keywords

None.

Returned Value

wid — The widget ID of the color wheel.

Callback Parameters

The “value changed” callback must have the following two parameters:

tool_name — A string containing the unique name of a VDA Tool.

color_index — The index of the color displayed in the color wheel.

Discussion

The color wheel modifies the current color table directly. WoColorWheel is used
by the WzColorEdit VDA Tool.

526 Application Developer’s Guide

Example

This is the callback that is called when the color wheel value is changed.

PRO ValueChangedCB, tool_name, color_index

 print, ’Value changed: ’, tool_name, color_index

END

This callback is called when the Color Wheel or Quit button is pressed. If Color
Wheel is pressed, a color wheel appears for the selected color index. If the Quit but-
ton is pressed, the shell is destroyed.

PRO ButtonCB, wid, which

 DECLARE FUNC, TmGetAttribute

 DECLARE FUNC, WoColorWheel

; Get the tool name from user data.

tool_name = WwGetValue (wid, /Userdata)

 CASE which OF

 1: BEGIN ; Color Wheel

; Get the selected color index.

color_om = TmGetAttribute (tool_name, ’TM’, ’COLOR_OM’)

 index = WwGetValue (color_om) - 1

; Display the color wheel.

wheel = WoColorWheel (tool_name, index, ’ValueChangedCB’)

 END

 2: BEGIN ; Quit

 top = TmGetTop (tool_name)

 status = WwSetValue (top, /Close)

 END

 ENDCASE

END

This program demonstrates the WoColorWheel function. It creates a simple tool
that allows the user to display the color wheel for any of the first 10 colors in the
current color table.

PRO WoColorWheel_test

 DECLARE FUNC, TmGetUniqueToolName

 DECLARE FUNC, TmSetAttribute

WoColorWheel Function 527

; Initialize the tool manager.

 TmInit

; Get a new unique tool name.

tool_name = TmGetUniqueToolName (’WoColorWheel_test’)

; Initialize the top-level shell, and register the tool.

top = WwInit (’WoColorWheel_test’, ’wocolorwheel_test’, $
layout, ’WoDestroyCB’, Userdata = tool_name, $
/Vertical, title = tool_name)

 TmRegister, tool_name, top

; Create the color option menu and the button box.

 color_menu = {, callback: ’TmNoOpCB’, $
button: ’0’, button: ’1’, button: ’2’, $
button: ’3’, button: ’4’, button: ’5’, $
button: ’6’, button: ’7’, button: ’8’, $
button: ’9’, button: ’10’}

 color_om = WwOptionMenu (layout, ’Color Index’, color_menu)

 button_wid = WwButtonBox (layout, [’Color Wheel...’, $
’Quit’], ’ButtonCB’, buttons = buttons)

; Save the attribute information needed for the callbacks.

 status = TmSetAttribute (tool_name, ’TM’, ’COLOR_OM’, $
color_om)

 FOR i = 0, (N_ELEMENTS(buttons) - 1) DO BEGIN

 status = WwSetValue (buttons(i), Userdata = tool_name)

 ENDFOR

; Display the tool.

 status = WwSetValue (top, /Display)

 WwLoop, /NoBlock

END

528 Application Developer’s Guide

WoConfirmClose Procedure
Displays a dialog box requiring the user to confirm a window close action.

Usage

WoConfirmClose, wid, tool_name

Input Parameters

wid — (long) Specifies the widget ID of the parent of the dialog box.

tool_name — (string) Specifies the unique name of the VDA Tool to close.

Input Keywords

NoUnRegister — If nonzero, the VDA Tool is not automatically unregistered.

Output Keywords

Status — Returns the status of the user interaction: If 0, then the user cancelled the
close operation; if 1, the user confirmed the close operation.

Discussion

If the user’s response is to close the VDA Tool, TmUnregister is called to close the
specified VDA Tool.

This routine is registered with the ConfirmClose keyword of the WwInit and
WwMainWindow functions. It is used when the Close command on the Window
Manager menu is selected. This routine is also used by the File=>Exit command
in VDA Tools.

WoConfirmClose checks the confirmClose resource to determine whether or
not to display the confirmation dialog box. If this resource is set to FALSE, the
TmUnregister procedure is called without asking the user to confirm the close.

Example 1

The following command is taken from the code for the WzColorEdit VDA Tool.
Here, WoConfirmClose is called as a keyword to the WwMainWindow function.

WoConfirmClose Procedure 529

...

top = WwMainWindow (parent, layout, ’WoDestroyCB’, $
Shell_name = ’WzColorEdit’, Layout_name = ’toolArea’, $
ConfirmClose = ’WoConfirmClose’, Title = unique_name, $
/Form, Userdata = unique_name)

...

Example 2

The NoUnRegister and Status keywords are primarily used by the Navigator. These
keywords allow the Navigator to systematically unregister VDA Tools when the
Navigator is unregistered.

PRO NavCloseCB, wid, index

; Forward declaration of TM functions.

DECLARE FUNC, TmEnumerateToolNames

DECLARE FUNC, TmGetTop

; Make sure the user wants to quit.

top = TmGetTop(’Navigator’)

WoConfirmClose, top, ’Navigator’, Status=status, /NoUnRegister

; If answered in the affirmative, close all tools, ending with Nav.

IF status EQ 1 THEN BEGIN

all_tools = TmEnumerateToolNames()

FOR i=0, N_ELEMENTS(all_tools)-1 DO BEGIN

IF all_tools(i) NE ’Navigator’ $
THEN TmUnregister, all_tools(i)

ENDFOR

; Finish with the Navigator closed.
TmUnregister, ’Navigator’

ENDIF

END

See Also

WwInit, WwMainWindow, TmUnregister

530 Application Developer’s Guide

WoDialogStatus Procedure
Saves or restores the status of a dialog box by saving or restoring the state of its
widgets as stored in the Tools Manager.

Usage

WoDialogStatus, toolname, status

Input Parameters

toolname — (string) Specifies the unique name of the VDA Tool with which the
dialog is associated.

status — Specifies a structure containing the status information. The fields are:

Keywords

Restore — If nonzero, restores the status of the dialog box.

Save — If nonzero, saves the status of the dialog box.

Verbose — If nonzero, prints messages indicating the status of WoDialogStatus.
This keyword is useful for debugging.

Discussion

The WIDGET_ID, DEFAULT, and ITEM fields must occur before the
ATTRIBUTE field in the structure status.

WoDialogStatus can be used to save and restore the status of any WAVE Widget
that allows WwSetValue and WwGetValue calls.

WIDGET_ID The widget ID of the widget to be saved or restored.

DEFAULT The default value to use upon restoring the dialog if noth-
ing is found in the Tools Manager. In other words, this is
the first time the dialog is invoked.

ITEM The Tools Manager item under which to save or restore
the setting.

ATTRIBUTE The Tools Manager attribute under which to save or
restore the setting.

WoDialogStatus Procedure 531

Example

The following code is taken from wzpreview.pro. It shows how WoDialogSta-
tus is used to set and restore dialog box values.

FUNCTION WzPreviewDialogCB, wid, index

 DECLARE FUNC, TmGetAttribute

 DECLARE FUNC, TmSetAttribute

; Get the userdata and extract the tool name from the structure.

 setup_data = WwGetValue(wid, /Userdata)

 tool_name = setup_data.tool_name

; If OK or Apply was pressed, save the dialog. Let the WoGenericDialog
; routine handle Cancel and Help.

 CASE index OF

 1: BEGIN ; OK

 WoDialogStatus, tool_name, setup_data.status, /Save

 RETURN, 0

 END

 2: BEGIN ; Apply

 WoDialogStatus, tool_name, setup_data.status, /Save

 RETURN, 0

 END

 3: BEGIN ; Cancel

 RETURN, 0

 END

 4: BEGIN ; Help

 RETURN, 0

 END

 ENDCASE

END

PRO WzPreviewFreeDialog, tool_name

 DECLARE FUNC, TmGetTop

 DECLARE FUNC, TmGetAttribute

 parent = TmGetTop(tool_name)

; Create the elements of the dialog.

 helpfile= TmGetAttribute(tool_name, ’TM_HELP’, ’HELP_FILE’)

532 Application Developer’s Guide

 topic = TmGetMessage(’wzpreview.ads’, $
’WzPreview_free_dialog_help’)

 title = TmGetMessage(’wzpreview.ads’, $
’WzPreview_free_title’) + tool_name

 free_dialog = WoGenericDialog(parent, layout, $
’WzPreviewDialogCB’, $
Dialog_name = ’freeDialog’, Title=title, $
Buttons=buttons, Help=[topic, helpfile], $
/Ok, /Apply, /Cancel)

; Create the elements of the dialog.

 separator_label = WwText(layout, Text=’’, /Label,$
Name=’separatorLabel’, /Top, /Left)
separator_radio = WwRadioBox(layout, [’’,’’,’’,’’], $
/NOfMany, /Vertical, /Form, $
Layout_name=’separatorForm’, $
Name=[’spaceToggle’, ’commaToggle’, $
’tabToggle’, ’otherToggle’], $
Toggles=separator_toggles, $
Top=separator_label, /Left)

other_text = WwText(separator_radio, Text=’’, $
Top=separator_toggles(2), $
Left=separator_toggles(3))

; Create data structure needed in the dialog callback.

 status = {, $

 WIDGET_ID: separator_toggles(0), $

 DEFAULT: 1, $

 ITEM: ’TM’, $

 ATTRIBUTE: ’SPACE_SEPARATOR’, $

 WIDGET_ID: separator_toggles(1), $

 DEFAULT: 1, $

 ITEM: ’TM’, $

 ATTRIBUTE: ’COMMA_SEPARATOR’, $

 WIDGET_ID: separator_toggles(2), $

 DEFAULT: 1, $

 ITEM: ’TM’, $

 ATTRIBUTE: ’TAB_SEPARATOR’, $

 WIDGET_ID: separator_toggles(3), $

 DEFAULT: 0, $

 ITEM: ’TM’, $

WoFontOptionMenu Function 533

 ATTRIBUTE: ’OTHER_SEPARATOR’, $

 WIDGET_ID: other_text, $

 DEFAULT: ’’, $

 ITEM: ’TM’, $

 ATTRIBUTE: ’OTHER_SEPARATOR_TEXT’ $

 }

; Use WoDialogStatus to restore the values that were previously saved from
; this dialog. If this is the first time this dialog is displayed the widgets are
; initialized from the DEFAULT field values.

 WoDialogStatus, tool_name, status, /Restore

; Set the tool name and the above structure as the userdata on the dialog
; buttons--we need the status structure to save the dialog status in the
; dialogs callback.

 setup_data = {, tool_name: tool_name, status: status}

; Set the userdata for all the buttons on the dialog.

 FOR i = 1, N_ELEMENTS(buttons) DO $

 s = WwSetValue(buttons(i-1), Userdata=setup_data)

; Show the dialog.

 s = WwSetValue(free_dialog, /Show)

END

See Also

WoGenericDialog

WoFontOptionMenu Function
Creates an option menu with the standard list of software (vector-drawn) fonts
found in PV-WAVE.

Usage

widget = WoFontOptionMenu(parent, toolname)

Input Parameters

parent — Specifies the parent widget ID of the option menu (long).

534 Application Developer’s Guide

toolname — (string) Specifies the unique name of the VDA Tool to which the
option menu is to be attached.

Returned Value

widget — The widget ID of the container (long).

Keywords

Name — Specifies a string containing the name of the option menu.

Start_Value — Specifies a string containing the font command for the initially
selected font.

Attachment Keywords

Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the option menu is attached to the top of the specified widget. If no widget
ID is specified (for example, /Bottom), then the bottom of the option menu is
attached to the bottom of the parent widget.

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the option menu is attached to the right side of the specified widget. If no widget
ID is specified (for example, /Left), then the left side of the option menu is
attached to the left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the option menu is attached to the left side of the specified widget. If no widget
ID is specified (for example, /Right), then the right side of the option menu is
attached to the right side of the parent widget.

Top — If a widget ID is specified (for example, Top=wid), then the top of the
option menu is attached to the bottom of the specified widget. If no widget ID is
specified (for example, /Top), then the top of the option menu is attached to the
top of the parent widget.

Discussion

Software fonts, also called vector-drawn or Hershey fonts, are internal to PV-
WAVE and are drawn with line vectors. Software fonts are specified by their font
command. For example, the font command for the Simplex Greek font is !4

WoFontOptionMenu Function 535

Example

This example creates a font option menu inside a layout widget. The default font
on the menu is set to Duplex Roman.

PRO OkApplyCB, wid, which

...

; Retrieve the currently selected font from the font option menu. The returned
; value will be a Wave font string (i.e., ’!3’).

 fontWid = WwGetValue (wid, /Userdata)

 font = WoFontOptionmenuGetValue (fontWid)

...

END

PRO ChangeFontCB, wid, which

...

; Set the current value of the font option menu. The new font should be a
; PV-WAVE font string (i.e., ’!3’).

 fontWid = WwGetValue (wid, /Userdata)

 WoFontOptionmenuSetValue, fontWid, new_font

...

END

PRO CreateStuff

...

 top = WwInit (’example’, ’Example’, layout)

; Create a font option menu as a child of the layout widget. When the font is
; displayed, its value will be ’!5’ (Duplex Roman).

 fontWid = WoFontOptionmenu (layout, Start_value = ’!5’)

...

 status = WwSetValue (top, /Display)

 WwLoop

END

See Also

WoFontOptionMenuGetValue, WoFontOptionMenuSetValue

536 Application Developer’s Guide

WoFontOptionMenuGetValue Function
Gets the software font command for the currently selected font.

Usage

font = WoFontOptionMenuGetValue(wid)

Input Parameters

wid — Specifies the widget ID returned by WoFontOptionMenu (long).

Returned Value

font — A string containing the software font command for the currently selected
font.

Keywords

None.

Discussion

Software fonts, also called vector-drawn or Hershey fonts, are internal to PV-
WAVE and are drawn with line vectors. Software fonts are specified by their font
command. For example, the font command for the Simplex Greek font is !4

Example

See the example given for WoFontOptionMenu.

See Also

WoFontOptionMenu, WoFontOptionMenuSetValue

WoFontOptionMenuSetValue Procedure 537

WoFontOptionMenuSetValue Procedure
Sets the current font and updates the font option menu.

Usage

WoFontOptionMenuSetValue, wid, font

Input Parameters

wid — Specifies the widget ID returned by WoFontOptionMenu (long).

font — Specifies a string containing the font command used to set the software
font.

Keywords

None.

Discussion

This procedure also updates the font option menu (WoFontOptionMenu) by show-
ing the font as selected.

Software fonts, also called vector-drawn or Hershey fonts, are internal to PV-
WAVE and are drawn with line vectors. Software fonts are specified by their font
command. For example, the font command for the Simplex Greek font is !4

Example

See the example given for WoFontOptionMenu.

See Also

WoFontOptionMenu, WoFontOptionMenuGetValue

538 Application Developer’s Guide

WoGenericDialog Function
Creates a generic dialog box for use in VDA Tools.

Usage

container = WoGenericDialog(parent, topLayout [,callback])

Input Parameters

parent — Specifies the parent widget ID of the dialog (long).

callback — (optional) Specifies a string containing the name of the callback
routine.

Output Parameters

topLayout — The widget ID of the top-level layout widget (long).

Returned Value

container — The widget ID of the dialog box (long).

Keywords

Apply — Inserts an action button with the label Apply in the dialog box.

Block — If nonzero, the dialog is blocking. (Default: nonblocking)

Board — If nonzero, a bulletin board layout is created for the topLayout. A form
widget is the default.

Form widgets are “attached” to one another inside the layout. Bulletin board wid-
gets are positioned in the layout with x, y coordinates.

Buttons — Returns the button widget IDs from WwButtonBox.

Cancel — Inserts an action button with the label Cancel in the dialog box. Unman-
ages the dialog when pressed.

Dialog_Name — Specifies a string containing a name for the generic dialog
widget.

Dismiss — Inserts an action button with the label Dismiss in the dialog box.

WoGenericDialog Function 539

Help — Specifies either a scalar string or a two-element string array. and inserts an
action button with the label Help in the dialog box. This button is always inserted
in the rightmost position in the action button area. If a scalar string, the button
brings up help on the topic specified by the string. A two-element string array can
be used to specify a topic name and the name of a help file.

Next — Inserts an action button with the label Next in the dialog box.

No — Inserts an action button with the label No in the dialog box. Unmanages the
dialog when pressed.

NoDestroy — If nonzero, the dialog box widget is hidden instead of destroyed
when any button that closes the dialog box (e.g., the Cancel button) is selected.

Ok — (The default) Inserts an action button with the label OK in the dialog box.
Unmanages the dialog when pressed.

Previous — Inserts an action button with the label Previous in the dialog box.

Reset — Inserts an action button with the label Reset in the dialog box.

Title — Specifies a string containing the title of the dialog box.

Yes — (Overrides Ok) Inserts an action button with the label Yes in the dialog box.
Unmanages the dialog when pressed.

Callback Parameters

wid — The widget ID of the action area button.

index — The index of the action area button that was pressed. The first button is 1;
the second, 2; and so on.

Discussion

The purpose of this function is to provide an easy method for you to add a dialog
box to a VDA Tool. This dialog is generic in that you can add widgets of your
choice to it.

The dialog is returned unmanaged; it is assumed that the calling routine will fill the
upper layout and then manage the dialog.

Buttons that will appear at the bottom of the dialog are controlled with keyword
parameters. The buttons will be positioned properly for compliance with the Motif
style guide.

540 Application Developer’s Guide

This function assumes that most dialog attributes will be controlled via resources
rather than a parameter list. Use the Resource keyword on WwInit, or the WtRe-
source function, to set the resource values.

The behavior of the dialog box is as follows:

• The second parameter returns the widget ID of the layout widget, which can be
filled in by the caller. This layout widget will always be a form widget.

• The optional “callback” (third) parameter supplies a callback that will be
called when a button is selected. This callback behaves the same as a callback
from the WwGenericDialog function.

The callback should be a function that returns 0 (accept default dismiss behav-
ior) or 1 (veto dismiss).

• If the Help keyword is used, the rightmost (last) button is assumed to be the
Help button (no matter what its name or label), and it will bring up the online
Help system. You can specify a help file other than the standard one for PV-
WAVE by passing a 2-element string array [’help_topic_name’,
’filename’] with the Help keyword.

Example

This example creates an entry point from which you can bring up a dialog box cre-
ated with WoGenericDialog. The dialog box contains three action buttons and a
text field.

FUNCTION Wogenericdialog_btn_cb, wid, data

; This function is called when any button in the generic dialog is pressed. If the
; function returns 0, the default button action (close for OK and Cancel, don’t
; close for Apply) happens. If a 1 is returned for the OK or Cancel button
; presses, the dialog will not be closed. This allows the programmer to keep
; the dialog up if an error condition needs to be corrected.

 PRINT, ’wogenericdialog_btn_cb’, wid, data

 RETURN, 0

END

; This procedure prints what the user typed into the text field.

PRO Text_cb, wid, data

 value = WwGetValue (wid)

 print, ’Value: ’, value

END

PRO wogenericdialog_button_cb, wid, data

; This procedure creates a generic dialog containing three buttons: "OK",

WoGenericDialog Function 541

; "Apply", and "Cancel". The dialog contains a text widget to type into.

COMMON wogenericdialog_common, topshell, $
wogenericdialog_shell

 CASE data OF

 1: BEGIN ; Simple

 dialog_wid = wogenericdialog (topshell, layout, $
/OK, /Apply, /Cancel)

 text_wid = WwText (layout, ’Text_CB’, Label = $
’Type something here: ’, /Top, /Left)

 status = WwSetValue (dialog_wid, /Show)

 END

 2: BEGIN ; Quit

 status = WwSetValue (topshell, /Close)

 END

 ENDCASE

END

; This is the main entry point. It creates a window with two buttons; one
; button is used to create a dialog with WoGenericDialog(), and the other is
; used to quit the sample application.

PRO wogenericdialog_test

 COMMON wogenericdialog_common, topshell, $
wogenericdialog_shell

 topshell = wwinit (’wogenericdialog_test’, ’Appl’, $
workarea)

 buttonbox = WwButtonBox (workarea, [’Dialog...’,’Quit’], $
’wogenericdialog_button_cb’, /horizontal)

 status = wwsetvalue(topshell, /display)

 WwLoop

END

See Also

WwGenericDialog

542 Application Developer’s Guide

WoGetToolNameFromTitle Function
Gets the unique name of a VDA tool given the unique window title of the VDA
Tool.

Usage

tool_name = WoGetToolNameFromTitle(window_title)

Input Parameters

window_title — A string specifying a unique window title of a VDA Tool.

Keywords

None.

Example

The following code allows selection of tools from a list of tool titles.

; Main procedure:
; Get the names of all tools and their titles.

tools = TmEnumerateToolNames(Titles=titles)

; Sort the titles alphabetically.

titles = titles(SORT(titles))

; Create a list containing the titles.

title_list = WwList(layout, titles, /Multi, $

/Top, /Bottom, /Right, /Left, Name=’titleList’)

; Callback procedure:
; Get the titles of selected tools.

titles = WwGetValue(title_list)

; Get the tool names from the titles.

tool_names = WoGetToolNameFromTitle(titles)

WoGetUniqueWindowTitle Function 543

See Also

WoGetUniqueWindowTitle, WoSetWindowTitle

WoGetUniqueWindowTitle Function
Given two descriptive strings, generates a unique window title for a VDA Tool.

Given a window title, adds a numeric suffix to make the title unique.

Usage

name = WoGetUniqueWindowTitle(primary, secondary)

Input Parameters

primary — A string specifying the primary component of the window title, typi-
cally a PV-WAVE variable name.

secondary — A string specifying the secondary component. Typically the VDA
Tool name, appears after a hyphen (–).

Returned Value

name — A string containing a unique name for the window.

Keywords

None.

Discussion

If the window “MyImage – Image” already exists, this routine returns “MyImage
– Image – (1)”.

Example

The following procedure creates and sets the title of a VDA Tool.

PRO WzToolNameSetTitle, tool_name

DECLARE FUNC, TmEnumerateVars

544 Application Developer’s Guide

; Get the description of this tool, i.e. ’Surface Tool’.
tool_title = TmGetMessage(’WzToolName_title’)

; Get the variable name(s).
var_names = TmEnumerateVars(tool_name)

IF N_ELEMENTS(var_names) EQ 1 THEN vars = var_names(0) $

ELSE vars = STRJOIN(var_names, ’,’)

; Create the window title and set it.
window_title = WoGetUniqueWindowTitle(vars, tool_title)

WoSetWindowTitle, tool_name, window_title

END

See Also

WoSetWindowTitle

WoLabeledText Function
Creates a group of aligned text widgets (widgets with a label and a text field).

Usage

widget = WoLabeledText(parent, label_names, verify_callback)

Input Parameters

parent — Specifies the parent widget ID of the text widget (long).

label_names — Specifies an array of strings containing the names of the label
widgets.

verify_callback — Specifies a string containing the name of the text verification
callback.

Returned Value

widget — The widget ID of the container widget (long).

WoLabeledText Function 545

Input Keywords

Cols — Specifies the number of columns in the text widgets. (Default: 10)

Horizontal — If nonzero, aligns the text widgets horizontally. (Default: vertical
alignment)

Layout_Name — Specifies a string containing the name of the container widget.

Position — A two-element array specifying the x, y coordinates of the text widgets
in the bulletin board. (Default: [0,0])

Text_Names — Specifies a string array containing the names of the text widgets.
(Default: [’text_0’, ’text_1’, ...])

Text_Strings — Specifies a string array containing the initial contents of the text
widgets.

Output Keywords

Text_Widgets — An array of widget IDs for the text widgets.

Attachment Keywords

Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the text widget is attached to the top of the specified widget. If no widget ID
is specified (for example, /Bottom), then the bottom of the text widget is attached
to the bottom of the parent widget.

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the text widget is attached to the right side of the specified widget. If no widget ID
is specified (for example, /Left), then the left side of the text widget is attached
to the left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the text widget is attached to the left side of the specified widget. If no widget
ID is specified (for example, /Right), then the right side of the text widget is
attached to the right side of the parent widget.

Top — If a widget ID is specified (for example, Top=wid), then the top of the text
widget is attached to the bottom of the specified widget. If no widget ID is specified
(for example, /Top), then the top of the text widget is attached to the top of the
parent widget.

546 Application Developer’s Guide

Discussion

The number of text fields is determined by the number of elements in the
label_names parameter.

The text fields are vertically-aligned unless the Horizontal keyword is specified.

Example

This example creates a group of vertically aligned text widgets. The text field labels
can be obtained from a resource file.

PRO ValueChangedCB, wid, which

...

; This callback is called if the user types <Return> within one of the text wi
; gets. The value will be a PV-WAVE string, identical to the value returned from
; WwText.

value = WwGetValue (wid)

 print, value

...

END

PRO CreateStuff

...

 top = WwInit (’example’, ’Example’, layout)

; Create a group of vertically aligned text widgets. The label strings will be
; blank unless they are loaded from a resource file or the X resource database.
; The label strings should be specified in resources, such as:

*distance.labelString: Distance

*velocity.labelString: Velocity

*acceleration.labelString: Acceleration

textWids = WoLabeledText (layout, [’distance’, ’velocity’, $
’acceleration’], ’ValueChangedCB’)

...

 status = WwSetValue (top, /Display)

 WwLoop

END

See Also

WwInit

WoLinestyleOptionMenu Function 547

WoLinestyleOptionMenu Function
Creates an option menu for selecting linestyles.

Usage

widget = WoLinestyleOptionMenu(parent, toolname)

Input Parameters

parent — Specifies the parent widget ID of the option menu (long).

toolname — (string) Specifies the unique name of the VDA Tool to which the
option menu is to be attached.

Returned Value

widget — The widget ID of the option menu (long).

Keywords

Nolinestyle — Adds a None option to the linestyles option menu.

Start_Value — Specifies a string containing the index of the initially selected
linestyle.

Attachment Keywords

Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the option menu is attached to the top of the specified widget. If no widget
ID is specified (for example, /Bottom), then the bottom of the option menu is
attached to the bottom of the parent widget.

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the option menu is attached to the right side of the specified widget. If no widget
ID is specified (for example, /Left), then the left side of the option menu is
attached to the left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the option menu is attached to the left side of the specified widget. If no widget
ID is specified (for example, /Right), then the right side of the option menu is
attached to the right side of the parent widget.

548 Application Developer’s Guide

Top — If a widget ID is specified (for example, Top=wid), then the top of the
option menu is attached to the bottom of the specified widget. If no widget ID is
specified (for example, /Top), then the top of the option menu is attached to the
top of the parent widget.

Discussion

The available linestyles and their index numbers are listed in the following table:

Example

This example creates a linestyle option menu inside a layout widget. The default
linestyle on the menu is set to dash-dot.

PRO OkApplyCB, wid, which

 ; ...

; Retrieve the currently selected linestyle from the option menu. The returned
; value will be an integer between 0 and 5 that corresponds to the setting of
; the !P.Linestyle system variable.

linestyleWid = WwGetValue (wid, /Userdata)

linestyle = WoLinestyleOptionMenuGetValue (linestyleWid)

 ; ...

END

PRO ChangeLinestyleCB, wid, which

 ; ...

; Set the linestyle in the option menu. The new value should be an integer
; between 0 and 5; see !P.Linestyle for more details.

 linestyleWid = WwGetValue (wid, /Userdata)

Index X Windows Style Microsoft Windows Style

0 Solid Solid

1 Dotted Short dashes

2 Dashed Long dashes

3 Dash dot Long-short dashes

4 Dash-dot-dot-dot Long-short-short dashes

5 Long dashes Long dashes

WoLinestyleOptionMenuGetValue Function 549

 WoLineStyleOptionMenuSetValue, lineStyleWid, new_linestyle

 ; ...

END

PRO CreateStuff

 ; ...

 top = WwInit (’example’, ’Example’, layout)

; Create a linestyle option menu as a child of the layout widget. When the
; option menu appears, it will have the "dash-dot" linestyle displayed.

linestyleOmWid = WoLinestyleOptionMenu (layout, START_VALUE = 3)

 ; ...

 status = WwSetValue (top, /Display)

 WwLoop

END

See Also

WoLinestyleOptionMenuGetValue, WoLinestyleOptionMenuSetValue

WoLinestyleOptionMenuGetValue Function
Gets the currently selected linestyle.

Usage

linestyle = WoLinestyleOptionMenuGetValue(wid)

Input Parameters

wid — Specifies the widget ID returned by WoLinestyleOptionMenu (long).

Returned Value

linestyle — The linestyle index (integer).

Keywords

None.

550 Application Developer’s Guide

Discussion

The available linestyles and their index numbers are listed in the following table:

Example

See the example given for WoLinestyleOptionMenu.

See Also

WoLinestyleOptionMenu, WoLinestyleOptionMenuSetValue

WoLinestyleOptionMenuSetValue Procedure
Sets the option menu to a specified linestyle.

Usage

WoLineStyleOptionMenuSetValue, wid, linestyle

Input Parameters

wid — (long) Specifies the widget ID returned by WoLinestyleOptionMenu.

linestyle — (integer) Specifies the index value of the linestyle to set.

Keywords

None.

Index X Windows Style Microsoft Windows Style

0 Solid Solid

1 Dotted Short dashes

2 Dashed Long dashes

3 Dash dot Long-short dashes

4 Dash-dot-dot-dot Long-short-short dashes

5 Long dashes Long dashes

WoLoadResources Procedure 551

Discussion

The available linestyles and their index numbers are listed in the following table:

Example

See the example given for WoLinestyleOptionMenu.

See Also

WoLinestyleOptionMenu, WoLinestyleOptionMenuGetValue

WoLoadResources Procedure
Loads resources and strings from a file for VDA tools.

Usage

WoLoadResources, file

Input Parameters

file — The name of the resource file to be loaded.

Returned Value

None.

Index X Windows Style Microsoft Windows Style

0 Solid Solid

1 Dotted Short dashes

2 Dashed Long dashes

3 Dash dot Long-short dashes

4 Dash-dot-dot-dot Long-short-short dashes

5 Long dashes Long dashes

552 Application Developer’s Guide

Keywords

Appdir — A string that specifies the application directory name. This is the direc-
tory in which the application searches for resource files, string resource files, and
icon files. See the Discussion. (Default: vdatools)

Subdir — A string specifying a resource file subdirectory. See the Discussion.

Discussion

UNIX USERS By default, the function looks for file first in directories specified
by the environment variable WAVE_RESPATH. This environment variable is a
colon separated list of directories, similar to the PV-WAVE WAVE_PATH environ-
ment variable. If not found in a WAVE_RESPATH directory, the directory
$WAVE_DIR/xres/!Lang/vdatools is searched, where !Lang represents the
value of the !Lang system variable in PV-WAVE.

OpenVMS USERS By default, the function looks for file first in directories spec-
ified by the logical WAVE_RESPATH. This logical is a comma separated list of
directories and text libraries, similar to the OpenVMS WAVE_PATH logical. If not
found in a WAVE_RESPATH directory, the directory
WAVE_DIR:[XRES.!Lang.VDATOOLS] is searched, where !Lang represents the
value of the !Lang system variable in PV-WAVE.

Windows USERS By default, the function looks for file first in directories spec-
ified by the environment variable WAVE_RESPATH. This environment variable is
a semicolon separated list of directories, similar to the PV-WAVE WAVE_PATH
environment variable. If not found in a WAVE_RESPATH directory, the directory
%WAVE_DIR%\xres\!Lang\vdatools is searched, where !Lang represents the
value of the !Lang system variable in PV-WAVE.

If Subdir is specified, the file is searched for in:

(UNIX) <wavedir>/xres/subdir/vdatools

(OpenVMS) <wavedir>:[XRES.SUBDIR.VDATOOLS]

(Windows) <wavedir>\xres\subdir\vdatools

Where <wavedir> is the main PV-WAVE directory.

If Appdir is specified, the application searches for resources in the following
directory:

WoLoadResources Procedure 553

(UNIX) <wavedir>/xres/!Lang/appdir

(OpenVMS) <wavedir>:[XRES.!Lang.APPDIR]

(Windows) <wavedir>\xres\!Lang\appdir

Where <wavedir> is the main PV-WAVE directory.

If Subdir and Appdir are specified, the application searches for resources in the fol-
lowing directory:

(UNIX) <wavedir>/xres/subdir/appdir

(OpenVMS) <wavedir>:[XRES.SUBDIR.APPDIR]

(Windows) <wavedir>\xres\subdir\appdir

Where <wavedir> is the main PV-WAVE directory.

If the file to be loaded is not already in the resource database, it is loaded and added
to the resource database list of files.

NOTE WoLoadResources keeps a list of the loaded files so that files aren’t redun-
dantly loaded.

The first time WoLoadResources is invoked, it loads the file wzglobal.ad.

Example

These calls load resources and strings for the Printer Setup dialog box used in VDA
Tools. This code was taken from the program woprintsetup.pro. The
resource and string files are located in:

(UNIX) <wavedir>/xres/american/vdatools

(OpenVMS) <wavedir>:[XRES.AMERICAN.VDATOOLS]

(Windows) <wavedir>\xres\american\vdatools

Where <wavedir> is the main PV-WAVE directory.

WoLoadResources, ’woprintsetup.ad’

; Load resources.

WoLoadStrings, ’woprintsetup.ads’

; Load the strings.

See Also

WoLoadStrings, WoBuildResourceFilename

554 Application Developer’s Guide

WoLoadStrings Procedure
Loads strings from a resource file for use by the VDA tools.

Usage

WoLoadStrings, file

Input Parameters

file — The name of the file to be loaded.

Returned Value

None.

Keywords

Appdir — A string that specifies the application directory name. This is the direc-
tory in which the application searches for resource files, string resource files, and
icon files. See the Discussion. (Default: vdatools)

Subdir — Specifies a subdirectory in which to look for the resource file.

Discussion

UNIX USERS By default, the function looks for file first in directories specified
by the environment variable WAVE_RESPATH. This environment variable is a
colon separated list of directories, similar to the PV-WAVE WAVE_PATH environ-
ment variable. If not found in a WAVE_RESPATH directory, the directory
$WAVE_DIR/xres/!Lang/vdatools is searched, where !Lang represents the
value of the !Lang system variable in PV-WAVE.

OpenVMS USERS By default, the function looks for file first in directories spec-
ified by the logical WAVE_RESPATH. This logical is a comma separated list of
directories and text libraries, similar to the OpenVMS WAVE_PATH logical. If not
found in a WAVE_RESPATH directory, the directory
WAVE_DIR:[XRES.!Lang.VDATOOLS] is searched, where !Lang represents the
value of the !Lang system variable in PV-WAVE.

WoLoadStrings Procedure 555

Windows USERS By default, the function looks for file first in directories spec-
ified by the environment variable WAVE_RESPATH. This environment variable is
a semicolon separated list of directories, similar to the PV-WAVE WAVE_PATH
environment variable. If not found in a WAVE_RESPATH directory, the directory
%WAVE_DIR%\xres\!Lang\vdatools is searched, where !Lang represents the
value of the !Lang system variable in PV-WAVE.

If Subdir is specified, the file is searched for in:

(UNIX) <wavedir>/xres/subdir/vdatools

(OpenVMS) <wavedir>:[XRES.SUBDIR.VDATOOLS]

(Windows) <wavedir>\xres\subdir\vdatools

Where <wavedir> is the main PV-WAVE directory.

If Appdir is specified, the application searches for resources in the following
directory:

(UNIX) <wavedir>/xres/!Lang/appdir

(OpenVMS) <wavedir>:[XRES.!Lang.APPDIR]

(Windows) <wavedir>\xres\!Lang\appdir

Where <wavedir> is the main PV-WAVE directory.

If Subdir and Appdir are specified, the application searches for resources in the fol-
lowing directory:

(UNIX) <wavedir>/xres/subdir/appdir

(OpenVMS) <wavedir>:[XRES.SUBDIR.APPDIR]

(Windows) <wavedir>\xres\subdir\appdir

Where <wavedir> is the main PV-WAVE directory.

If the file to be loaded is not already in the resource database, it is loaded and added
to the resource database list of files.

This procedure functions as a wrapper to the WoLoadResources procedure with the
Strings keyword set.

Example

These calls load resources and strings for the Printer Setup dialog box used in VDA
Tools. This code was taken from the program woprintsetup.pro. The
resource and string files are located in:

556 Application Developer’s Guide

(UNIX) <wavedir>/xres/american/vdatools

(OpenVMS) <wavedir>:[XRES.AMERICAN.VDATOOLS]

(Windows) <wavedir>\xres\american\vdatools

Where <wavedir> is the main PV-WAVE directory.

WoLoadResources, ’woprintsetup.ad’

; Load resources.

WoLoadStrings, ’woprintsetup.ads’

; Load the strings.

See Also

WoLoadResources

WoMenuBar Function
Create a menu bar for a VDA Tool.

Usage

bar = WoMenuBar(parent, toolname [,menus])

Input Parameters

parent — (long) Specifies the parent widget ID of the menu bar.

toolname — (string) Specifies the unique name of the VDA Tool to which the
menu bar is to be attached.

menus — (optional) Specifies an unnamed structure containing menu definitions.
This parameter is only needed if you do not wish to use the standard graphics menu
bar (i.e., when the Graphics keyword is not specified).

Returned Value

bar — The widget ID of the menu bar.

Keywords

Graphics — If nonzero, specifies that the standard menu for graphics VDA Tools
should be used.

WoMenuBar Function 557

Attachment Keywords

Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the menu bar is attached to the top of the specified widget. If no widget ID
is specified (for example, /Bottom), then the bottom of the menu bar is attached
to the bottom of the parent widget.

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the menu bar is attached to the right side of the specified widget. If no widget ID is
specified (for example, /Left), then the left side of the menu bar is attached to the
left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the menu bar is attached to the left side of the specified widget. If no widget ID
is specified (for example, /Right), then the right side of the menu bar is attached
to the right side of the parent widget.

Top — If a widget ID is specified (for example, Top=wid), then the top of the
menu bar is attached to the bottom of the specified widget. If no widget ID is spec-
ified (for example, /Top), then the top of the menu bar is attached to the top of the
parent widget.

Discussion

If the Graphics keyword is specified, a predefined set of standard menus is pro-
vided automatically. These predefined menus are equipped with functional
callbacks. If you choose to use the predefined set of menus in your application, you
do not need to modify the underlying structure of the menus or the callbacks. Both
the predefined callbacks and the underlying menu structures are defined in the fol-
lowing files in the vdatools subdirectory of the Standard Library:

wographicsmenus.pro — Uses unnamed structures to define the menus and
callbacks for the menus.

wographicsmenuscb.pro — Contains the callback routines for each menu.

If you do not choose to use the standard menu bar, then you can use these files as
templates for creating a customized menu bar. Use the optional menu parameter to
specify the name of the unnamed structure containing the new menu definitions.
The structure definition can be added to the VDA Tool program with an
@include statement or included in the VDA Tool program itself.

For a customized menu bar, you will also have to write and include appropriate
callback procedures in your application.

558 Application Developer’s Guide

NOTE For information on how to use the functions on the standard menu bar, run
one of the graphical VDA Tools, such as WzPlot, and read about the menu bar in
online help.

Example 1

In this example, the Graphics keyword is used to place a standard menu bar in a
VDA Tool.

bar = WoMenuBar(layout, tool_name, /Graphics, /Top, /Left, /Right)

Example 2

This example shows a portion of the resource file for the WzPreview VDA Tool.
The resources shown are used by the menus of this VDA Tool. These menus differ
from the standard menu bar. The menu bar structure is then defined.

wzpreview.ad - resources for the WzPreview menus

!

! Menus and menu items

!

! Edit items

!

*WzPreview*EditDefineHeader.labelString: Define Header...

*WzPreview*EditDefineHeader.mnemonic: H

*WzPreview*EditDefineHeader.acceleratorText: Ctrl+H

*WzPreview*EditDefineHeader.accelerator: Ctrl<Key>H

*WzPreview*EditDefineRecord.labelString: Define Record...

*WzPreview*EditDefineRecord.mnemonic: R

*WzPreview*EditDefineRecord.acceleratorText: Ctrl+R

*WzPreview*EditDefineRecord.accelerator: Ctrl<Key>R

*WzPreview*EditDefineField.labelString: Define Field...

*WzPreview*EditDefineField.mnemonic: F

*WzPreview*EditDefineField.acceleratorText: Ctrl+F

*WzPreview*EditDefineField.accelerator: Ctrl<Key>F

WoMenuBar Function 559

*WzPreview*EditSelectArea.labelString: Select Area

*WzPreview*EditSelectArea.mnemonic: S

*WzPreview*EditClear.labelString: Clear

*WzPreview*EditClear.mnemonic: C

*WzPreview*EditClear.acceleratorText: Ctrl+X

*WzPreview*EditClear.accelerator: Ctrl<Key>X

*WzPreview*EditClearAll.labelString: Clear All

*WzPreview*EditClearAll.mnemonic: A

*WzPreview*EditClearAll.acceleratorText: Ctrl+A

*WzPreview*EditClearAll.accelerator: Ctrl<Key>A

!

! Attributes items

!

*WzPreview*AttributesSetup.labelString: Setup...

*WzPreview*AttributesSetup.mnemonic: S

*WzPreview*AttributesVariable.labelString: Variable

*WzPreview*AttributesVariable.mnemonic: r

*WzPreview*AttributesVariable*NoVariable.labelString: No variables

*WzPreview*AttributesFixedFormat.labelString: Fixed Format...

*WzPreview*AttributesFixedFormat.mnemonic: x

*WzPreview*AttributesFreeFormat.labelString: Free Format...

*WzPreview*AttributesFreeFormat.mnemonic: r

; Define the WzPreview menu bar structure (in the wzpreview.pro procedure).

 wzpreview_menus = {, $

 NAME: [’FileMenu’,’FileMenu’], $

 MENUBUTTON: ’’, $

 MENU: {,CALLBACK: ’WoGMBFileOpenCB’, $

 NAME: ’FileOpen’, $

 BUTTON: ’’, $

560 Application Developer’s Guide

 CALLBACK: ’WzPreviewFileSaveCB’, $

 NAME: ’FileSave’, $

 BUTTON: ’’, $

 CALLBACK: ’WzPreviewFileSaveAsCB’, $

 NAME: ’FileSaveAs’, $

 BUTTON: ’’, $

 CALLBACK: ’WoGMBFileSaveTemplateAsCB’, $

 NAME: ’FileSaveTemplateAs’, $

 BUTTON: ’’, $

 SEPARATOR: 1, $

 CALLBACK: ’WoGMBFileExportVariableCB’, $

 NAME: ’FileExportVariable’, $

 BUTTON: ’’, $

 SEPARATOR: 1, $

 NAME: ’FileGenerateCode’, $

 CALLBACK: ’WoGMBFileGenerateCodeCB’, $

 BUTTON: ’’, $

 SEPARATOR: 1, $

 CALLBACK: ’WoGMBFileCloseCB’, $

 NAME: ’FileClose’, $

 BUTTON: ’’ $

 }, $

 NAME: [’EditMenu’, ’EditMenu’],$

 MENUBUTTON: ’’,$

 MENU:{,$

 CALLBACK: ’WzPreviewEditCB’, $

 NAME: ’EditDefineHeader’,$

 BUTTON: ’’,$

 NAME: ’EditDefineRecord’,$

 BUTTON: ’’,$

 NAME: ’EditDefineField’,$

 BUTTON: ’’,$

 SEPARATOR: 1, $

 NAME: ’EditSelectArea’,$

WoMenuBar Function 561

 BUTTON: ’’,$

 SEPARATOR: 1, $

 NAME: ’EditClear’,$

 BUTTON: ’’,$

 NAME: ’EditClearAll’,$

 BUTTON: ’’ $

 }, $

 NAME: [’AttributesMenu’, ’AttributesMenu’],$

 MENUBUTTON: ’’,$

 MENU:{, $

 CALLBACK: ’WzPreviewSetupCB’, $

 NAME: ’AttributesSetup’, $

 BUTTON: ’’, $

 NAME: [’AttributesVariable’,$

’AttributesVariable’], $

 MENUBUTTON: ’’, $

 MENU:{, $

 CALLBACK: ’WzPreviewAttributesVarCB’, $

 NAME: ’NoVariables’, $

 BUTTON: ’’ $

 }, $

 SEPARATOR: 1, $

 CALLBACK:’WzPreviewFormatCB’,$

 NAME: ’AttributesFixedFormat’,$

 TOGGLE:’’,$

 NAME: ’AttributesFreeFormat’,$

 TOGGLE:’’$

 }, $

 NAME: [’WindowMenu’, ’WindowMenu’],$

 MENUBUTTON: ’’,$

 MENU:{,CALLBACK:’WoGMBWindowCB’,$

 NAME: ’Window_1’,$

 BUTTON: ’’ $

 }, $

562 Application Developer’s Guide

 CALLBACK: ’WoGMBHelpCB’, $

 NAME: [’HelpMenu’, ’HelpMenu’],$

 MENUBUTTON: ’’,$

 MENU:{,CALLBACK: ’WoGMBHelpOnWindowCB’,$

 NAME: ’HelpOnWindow’,$

 BUTTON: ’’, $

 CALLBACK: ’WoGMBHelpIndexCB’,$

 NAME: ’HelpIndex’,$

 BUTTON: ’’, $

 CALLBACK: ’WoGMBHelpOnHelpCB’,$

 NAME: ’HelpOnHelp’,$

 BUTTON: ’’, $

 SEPARATOR: 1, $

 CALLBACK: ’WoGMBHelpOnVersionCB’,$

 NAME: ’HelpOnVersion’,$

 BUTTON: ’’ $

 } $

 }

; Use the structure with customized menus, but include the Graphics keyword
; to include callbacks for the graphics menu items.

 bar = WoMenuBar(layout, tool_name, wzpreview_menus, $

/Graphics, /Top, /Left, /Right)

; If no filename or a bad file was specified, make all the
; filename-dependent menu items insensitive.

 IF STRLEN(file) EQ 0 THEN BEGIN

 panes = [1, $; File menu

 1, $

 1, $

 1, $

 1, $

 2, $; Edit menu

 2, $

 2, $

 2, $

 2, $

WoMenuBarSetSensitivity Procedure 563

 2 $

]

 items = [2, $; Save

 3, $; Save As...

 4, $; Save Template As...

 6, $; Export Variable(s)

 8, $; Generate Code

 1, $; Select Header

 2, $; Select Record

 3, $; Select Field

 5, $; Select Area

 7, $; Clear

 8 $; Clear All

]

 WoMenuBarSetSensitivity, tool_name, panes, items, 0

 ENDIF

See Also

WoMenuBarSetSensitivity

WoMenuBarSetSensitivity Procedure
Sets the sensitivity of one or more items in a menu.

Usage

WoMenuBarSetSensitivity, toolname, pane_index, item_index, sensitivity

Input Parameters

toolname — (string) Specifies the unique name of the VDA Tool to which the
menu bar is attached.

pane_index — Specifies the index for a specific menu pane in the array of menu
panes. The first menu is 1; the second, 2; and so on.

564 Application Developer’s Guide

NOTE A submenu’s index number is the number following its parent menu index.

item_index — Specifies the index of the menu item to change in the specified menu
pane. The first item is 1; the second, 2; and so on.

NOTE Separators are counted as items in the menu, and must be included in the
item_index specification.

sensitivity — Specifies a scalar or array with the sensitivity of the menu item or
items. A value of 0 makes the item insensitive; 1 makes the item sensitive.

Keywords

None.

Discussion

If the sensitivity parameter is a scalar, then all menu items are set to the value of
sensitivity. If the sensitivity parameter is an array, each menu item is set to its cor-
responding element in sensitivity. In other words, the sensitivity of the first item is
set to the first value in the array, the second item to the second value, and so on. If
sensitivity is an array with fewer elements than menu items, the extra items are set
to 1 (sensitive).

Example

For an example using WoMenuBarSetSensitivity, see WoMenuBar.

See Also

WoMenuBar

WoMenuBarSetToggle Procedure 565

WoMenuBarSetToggle Procedure
Sets the status of a menu toggle button.

Usage

WoMenuBarSetToggle, tool_name, pane_index, item_index, value

Input Parameters

tool_name — A string specifying the unique name of the VDA Tool to which the
menu bar is attached.

pane_index — An integer or array of integers specifying the index for a specific
menu pane in the array of menu panes. The first menu is 1; the second, 2; and so on.

item_index — An integer or array of integers specifying the index of the menu item
to change in the specified menu pane. The first item is 1; the second, 2; and so on.
This parameter must have the same number of elements as pane_index .

value — An integer or array of integers specifying the status of the toggle.
Selected =1; deselected = 0.

Keywords

Item — A string specifying a menubar item as specified in WoMenuBar.

Discussion

In general, this function is used to set toggles in VDA Tool and Navigator menus.
For example, the Options menu toggles found in VDA Tools and the Configure
menu toggles found on the Navigator are set with this routine.

A submenu’s index number is the number following its parent menu index.

Separators are counted as items in the menu, and must be included in the
item_index specification.

Example

This code gets the stored status of the Buttonbar, Controls area, and Message area
and sets the menu toggles to match.

(From wave/lib/vdatools/wzsurface.pro.)

566 Application Developer’s Guide

; Set the Options menu toggles.

area_status=[$

TmGetAttribute(tool_name, ’TM’, ’BUTTONBAR_STATUS’, Default=1), $

TmGetAttribute(tool_name, ’TM’, ’CONTROLS_STATUS’, Default=1), $

TmGetAttribute(tool_name, ’TM’, ’MESSAGE_STATUS’, $
Default=1) $

]

WoMenuBarSetToggle, tool_name, [7, 7, 7], [1, 2, 3], area_status

See Also

WoMenuBar

WoMessage Function
Creates a message area for a VDA Tool

Usage

widget = WoMessage(parent, toolname)

Input Parameters

parent — Specifies the parent widget ID of the message area (long).

toolname — (string) Specifies the unique name of the VDA Tool to which the mes-
sage area is attached.

Returned Value

widget — The ID of the message area widget.

Keywords

Frame — If present and nonzero, a frame widget is placed around the message
area.

Rows — Specifies the number of lines in the message area.

WoMessage Function 567

Attachment Keywords

Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the message area is attached to the top of the specified widget. If no widget
ID is specified (for example, /Bottom), then the bottom of the message area is
attached to the bottom of the parent widget.

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the message area is attached to the right side of the specified widget. If no widget
ID is specified (for example, /Left), then the left side of the message area is
attached to the left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the message area is attached to the left side of the specified widget. If no widget
ID is specified (for example, /Right), then the right side of the message area is
attached to the right side of the parent widget.

Top — If a widget ID is specified (for example, Top=wid), then the top of the
message area is attached to the bottom of the specified widget. If no widget ID is
specified (for example, /Top), then the top of the message area is attached to the
top of the parent widget.

Examples

The following examples show three ways in which WoAddMessage can be used in
a VDA Tool. Messages are defined in a resource file, and WoMessage is used to
create the message area in the VDA Tool.

This is part of a resource file defined for a VDA Tool.

mytool.ads

 MyTool_intro: Welcome to my tool...

 MyTool_SelectButton_1: Press MB1 to begin selection

 MyTool_SelectButton_2: Press MB2 to end selection

 MyTool_FileRead: Reading file:

...

; Create a 6 line message area.

...

ms = WoMessage(layout, tool_name, Rows=6, /Frame, /Left, $
/Right, /Bottom)

...

568 Application Developer’s Guide

Example 1

Introductory messages are added to the VDA Tool.

WoAddMessage, tool_name, ’MyTool_intro’, /Clear

WoAddMessage, tool_name, ’WzGlobal_intro’

Example 2

WoAddMessage can be used to display multiple messages with a single call.

WoAddMessage, tool_name, ’MyTool_SelectButton’, /Clear

Example 3

Messages can be tailored with dynamic information and then displayed.

msg = TmGetMessage(’mytool.ads’, ’MyTool_FileRead’)

msg = msg + ’ ’ + file_name

WoAddMessage, tool_name, Message=msg

See Also

WoAddMessage

WoSaveAsPixmap Procedure
Saves graphics from a specified VDA Tool as a pixmap.

Usage

WoSaveAsPixmap, tool_name, varname

Input Parameters

tool_name — The unique name of the VDA Tool from which to read the graphics
as a pixmap.

varname — The name of the variable in which to save the pixmap.

WoSetCursor Procedure 569

Keywords

Add — If nonzero, the pixmap is added to the specified variable. This keyword is
used to build a sequence of pixmaps that can be animated.

Discussion

The Add keyword is used to build a sequence of pixmaps to animate. The variable
created when Add is used is 3D. The first two dimensions contain the pixmap data,
and the third dimension represents the number of pixmaps in the variable. For
example, if the dimension of the variable is 512-by-512-by-30, the variable, when
viewed in the WzAnimate Tool, would produce a loop or cycle consisting of 30
frames.

Example
WzSurface, DIST(30)

; Create a surface plot.

WoSaveAsPixmap, ’WzSurface_0’, ’Surf’

; Save a pixmap of the surface in a variable called “Surf”.
; Now, rotate the Surface in the WzSurface Tool.

WoSaveAsPixmap, ’WzSurface_0’, ’Surf’, /Add

; Add the rotated surface the pixmap variable “Surf”.

WzAnimate, surf

; Run the WzAnimate Tool and animate the pixmaps.

WoSetCursor Procedure
Changes the cursor for a VDA Tool.

Usage

WoSetCursor, tool_name

Parameters

tool_name — A string containing the unique name of a VDA Tool.

570 Application Developer’s Guide

Keywords

Wait — Displays a “wait” cursor.

System — Displays the system cursor. This is the default.

Discussion

This routine calls WtCursor to change the current cursor.

Example

The following line changes the cursor in the VDA Tool WzPlot_0 to a “wait”
cursor.

WoSetCursor, ’WzPlot_0’, /Wait

See Also

WtCursor

WoSetToolIcon Procedure
Assigns a pixmap to be the icon for a VDA Tool.

Usage

WoSetToolIcon, tool_name, icon

Input Parameters

tool_name — The name of the VDA Tool for which to set the icon.

icon — The filename of the icon pixmap.

Keywords

Appdir — A string that specifies the application directory name. This is the direc-
tory in which the application searches for resource files, string resource files, and
icon files. See the Discussion. (Default: vdatools)

WoSetToolIcon Procedure 571

Discussion

When a VDA Tool is iconized (the user clicks on the appropriate Window Manager
button), the specified pixmap is shown on the icon.

UNIX USERS By default, the function looks for file first in directories specified
by the environment variable WAVE_RESPATH. This environment variable is a
colon separated list of directories, similar to the PV-WAVE WAVE_PATH environ-
ment variable. If not found in a WAVE_RESPATH directory, the directory
$WAVE_DIR/xres/!Lang/vdatools is searched, where !Lang represents the
value of the !Lang system variable in PV-WAVE.

OpenVMS USERS By default, the function looks for file first in directories spec-
ified by the logical WAVE_RESPATH. This logical is a comma separated list of
directories and text libraries, similar to the OpenVMS WAVE_PATH logical. If not
found in a WAVE_RESPATH directory, the directory
WAVE_DIR:[XRES.!Lang.VDATOOLS] is searched, where !Lang represents the
value of the !Lang system variable in PV-WAVE.

Windows USERS By default, the function looks for file first in directories spec-
ified by the environment variable WAVE_RESPATH. This environment variable is
a semicolon separated list of directories, similar to the PV-WAVE WAVE_PATH
environment variable. If not found in a WAVE_RESPATH directory, the directory
%WAVE_DIR%\xres\!Lang\vdatools is searched, where !Lang represents the
value of the !Lang system variable in PV-WAVE.

If Appdir is specified, the application searches for resources in the following
directory:

(UNIX) <wavedir>/xres/!Lang/appdir

(OpenVMS) <wavedir>:[XRES.!Lang.APPDIR]

(Windows) <wavedir>\xres\!Lang\appdir

Where <wavedir> is the main PV-WAVE directory.

Example

This call is taken from the code for the WzContour VDA Tool. It sets the icon pix-
map for WzContour.

...

572 Application Developer’s Guide

WoSetToolIcon, top, ’wzcontour.pm’

...

WoSetWindowTitle Procedure
Sets the title for a VDA Tool window.

Usage

WoSetWindowTitle, tool_name, window_title [, tool_title]

Input Parameters

tool_name — A string specifying the unique name of a VDA Tool.

window_title — A string, as returned by WoGetUniqueWindowTitle, specifying a
unique name for the VDA Tool window.

tool_title — (optional) A string specifying a general name for the VDA Tool, e.g.,
’surface’.

Keywords

None.

Example

See the example for WoGetUniqueWindowTitle.

See Also

WoGetUniqueWindowTitle

WoStatus Function 573

WoStatus Function
Create a status bar for a VDA Tool.

Usage

widget = WoStatus(parent, toolname)

Input Parameters

parent — Specifies the parent widget ID of the status bar (long).

toolname — (string) Specifies the unique name of the VDA Tool to which the sta-
tus bar is attached.

Returned Value

widget — The ID of the status bar widget.

Keyword

Frame — If present and nonzero, a frame widget is placed around the status bar.

Attachment Keywords

Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the status bar is attached to the top of the specified widget. If no widget ID
is specified (for example, /Bottom), then the bottom of the status bar is attached
to the bottom of the parent widget.

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the status bar is attached to the right side of the specified widget. If no widget ID
is specified (for example, /Left), then the left side of the status bar is attached to
the left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the status bar is attached to the left side of the specified widget. If no widget ID
is specified (for example, /Right), then the right side of the status bar is attached
to the right side of the parent widget.

Top — If a widget ID is specified (for example, Top=wid), then the top of the sta-
tus bar is attached to the bottom of the specified widget. If no widget ID is specified

574 Application Developer’s Guide

(for example, /Top), then the top of the status bar is attached to the top of the par-
ent widget.

Examples

The following examples show two ways in which WoAddStatus can be used in a
VDA Tool. Messages are defined in a resource file, and WoStatus is used to create
the status area in the VDA Tool.

This is part of a resource file defined for a VDA Tool.

mytool.ads

 MyTool_Initialize: Initializing...

 MyTool_FileRead: Read file:

...

; Create the status area.

...

sa = WoStatus(layout, tool_name, Top=bar, /Left)

...

Example 1

Set the status string.

WoAddStatus, tool_name, ’MyTool_Initialize’

Example 2

Status messages can be tailored with dynamic information and then displayed.

msg = TmGetMessage(’mytool.ads’, ’MyTool_FileRead’)

msg = msg + file_name

WoAddStatus, tool_name, Status=msg

See Also

WoAddStatus, WoMessage

WoVariableOptionMenu Function 575

WoVariableOptionMenu Function
Creates an option menu containing the names of all of the variables associated with
the current tool.

Usage

widget = WoVariableOptionMenu(parent, toolname)

Input Parameters

parent — Specifies the parent widget ID of the option menu (long).

toolname — (string) Specifies the unique name of the VDA Tool to which the
option menu is to be attached.

Returned Value

widget — The widget ID of the option menu.

Keywords

Start_Value — Specifies a string containing the name of the initially selected
variable.

Variables — A 1D string array containing the names of variables to list in the
option menu. By default, the list of variables returned by TmEnumerateVars is
used.

Attachment Keywords

Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the option menu is attached to the top of the specified widget. If no widget
ID is specified (for example, /Bottom), then the bottom of the option menu is
attached to the bottom of the parent widget.

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the option menu is attached to the right side of the specified widget. If no widget
ID is specified (for example, /Left), then the left side of the option menu is
attached to the left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the option menu is attached to the left side of the specified widget. If no widget

576 Application Developer’s Guide

ID is specified (for example, /Right), then the right side of the option menu is
attached to the right side of the parent widget.

Top — If a widget ID is specified (for example, Top=wid), then the top of the
option menu is attached to the bottom of the specified widget. If no widget ID is
specified (for example, /Top), then the top of the option menu is attached to the
top of the parent widget.

Discussion

The first option menu item is labelled None.

The variable name option menu cannot be modified once it has been created, except
to set the current selection. If the list of variable names changes, the option menu
must be recreated.

NOTE Do not use WwSetValue with the Userdata keyword on the returned widget
or on its parent widget after calling this routine. This use will cause unexpected
side-effects, because WwSetValue changes the user data for a widget and for all of
its children.

Example

This example creates a variable option menu inside a layout widget. The menu con-
tains the names of the variables associated with the VDA Tool to which the menu
is attached.

PRO OkApplyCB, wid, which

 ; ...

; Retrieve the currently selected variable from the option menu. The returned
; value will be a string containing the variable name.

VariableWid = WwGetValue (wid, /Userdata)

 variable = WoVariableOptionMenuGetValue (VariableWid)

 ; ...

END

PRO ChangeVariableCB, wid, which

 ; ...

; Set the currently selected variable name in the variable option menu.
; The new variable name should be a string containing the name of an
; existing WAVE variable.

VariableWid = WwGetValue (wid, /Userdata)

WoVariableOptionMenuGetValue Function 577

 WoVariableOptionMenuSetValue, VariableWid, new_index

 ; ...

END

PRO CreateStuff

 TmInit

 tool_name = ’CreateStuff’

 ; ...

 top = WwInit (’example’, ’Example’, layout)

; Create a variable option menu as a child of the layout. The option menu
; will contain all of the variable names associated with the tool, and another
; entry labeled "None".

VariableWid = WoVariableOptionMenu (layout, tool_name)

 ; ...

 status = WwSetValue (top, /Display)

 WwLoop

END

See Also

TmEnumerateVars, WoVariableOptionMenuGetValue,
WoVariableOptionMenuSetValue

WoVariableOptionMenuGetValue Function
Gets the currently selected variable name from an option menu that was created
with the WoVariableOptionMenu function.

Usage

varname = WoVariableOptionMenuGetValue(wid)

Input Parameters

wid — Specifies the widget ID returned by WoVariableOptionMenu (long).

Returned Value

varname — A string containing the name of the currently selected variable.

578 Application Developer’s Guide

Keywords

None.

Example

See the example given for WoVariableOptionMenu.

See Also

WoVariableOptionMenu, WoVariableOptionMenuSetValue

WoVariableOptionMenuSetValue Procedure
Sets the current selection in the variable option menu.

Usage

WoVariableOptionMenuSetValue, wid, value

Input Parameters

wid — Specifies the widget ID returned by WoVariableOptionMenu (long).

value — Specifies a string containing the new variable name to set.

Keywords

None.

Discussion

The variable name option menu cannot be modified once it has been created, except
to set the current selection. If the list of variable names changes, the option menu
must be recreated.

If no matching option menu values are found, the label None is used.

Example

See the example given for WoVariableOptionMenu.

WoVariableOptionMenuSetValue Procedure 579

See Also

WoVariableOptionMenu, WoVariableOptionMenuGetValue

580 Application Developer’s Guide

581

CHAPTER

12

Localizing PV-WAVE Applications
To localize an application means to translate the text that appears in the application
to the user’s native language. This text includes labels that appear on menus, dia-
logs, and other GUI “widgets”, as well as error and warning messages.

Localizing the VDA Tools
PV-WAVE uses resource and string files to isolate the dynamic aspects of applica-
tions in files that are distinct from the code. For instance, the labels that appear in
VDA Tools menus are maintained in separate resource files, and the application
accesses these resource files as they are needed. Similarly, error messages and other
dynamic text information not directly related to widgets are maintained in separate
string files. String and resource files greatly simplify the process of localizing soft-
ware applications.

The process of translating, or localizing, an application is described in the follow-
ing sections.

Copy and Translate Resource and String Files

Step 1 Make a copy of the following directory, including its contents and all of
its subdirectories:

(UNIX) <wavedir>/xres/american/*

(OpenVMS) <wavedir>:[XRES.AMERICAN.*]

(Windows) <wavedir>\xres\american*

582 Application Developer’s Guide

Where <wavedir> is the main PV-WAVE directory.

Step 2 Give the new local-language directory tree a name that reflects the local
language. For example: japanese.

Step 3 Translate the labels and text strings contained in the resource and string
files in the new local-language resource directory tree. By convention,
string files end in .ads, and resource files end in .ad.

NOTE Be sure that you can select a font that contains the special characters you
wish to use. For special characters to be displayed correctly, a font containing those
characters must be selected.

How PV-WAVE Determines the Locale

PV-WAVE determines which locale (wave/xres subdirectory) to use when load-
ing resource and string files at run time. It does this by examining the value of the
!Lang system variable.

To set the initial value of !Lang (the locale), PV-WAVE follows this procedure:

Step 1 Looks at the value of the WAVE_LANG environment variable (or VMS
logical).

Step 2 If step 1 fails, looks at the value of the locale that is defined by the oper-
ating system.

Step 3 If steps 1 and 2 fail, uses a default locale.

The rest of this section explains these steps in detail. Using the information in this
section, you can set the default locale of your entire PV-WAVE installation, or over-
ride the default locale for a particular PV-WAVE session.

The WAVE_LANG Environment Variable

To determine the locale to use, PV-WAVE first checks the environment variable
WAVE_LANG.

When PV-WAVE starts, the environment variable (or VMS logical) WAVE_LANG
is examined. If this environment variable is set and if the directory:

(UNIX) <wavedir>/xres/$WAVE_LANG

(OpenVMS) <wavedir>:[XRES.WAVE_LANG]

(Windows) <wavedir>\xres\%WAVE_LANG%

 583

exists, then WAVE_LANG is used to set the !Lang system variable and, thus, the sys-
tem locale. For instance, if WAVE_LANG is set to japanese, then the resource
and string files for PV-WAVE applications will be loaded from the area:

(UNIX) <wavedir>/xres/japanese

(OpenVMS) <wavedir>:[XRES.JAPANESE]

(Windows) <wavedir>\xres\JAPANESE

NOTE Use WAVE_LANG primarily to override the default system locale. For
example, if the default system locale is japanese, you can use the American
English resources by setting WAVE_LANG to american.

The Operating System Locale Setting

If the WAVE_LANG variable is not set, or if its value cannot be used (for example,
because a subdirectory named $WAVE_DIR/xres/$WAVE_LANG does not
exist), then the operating system locale setting is retrieved and used to determine
the proper locale for PV-WAVE.

The operating system locale setting is determined by the value of an environment
variable (or VMS logical). If necessary, PV-WAVE examines this variable and uses
its value as a key into a string file called locale.ads, which resides in the xres
directory.

The locale.ads file contains name/value pairs, with the name of the operating
system locale on the left, followed by a colon, followed by the name of the xres
subdirectory containing the localized resource files. For example:

Japanese_Japan.932: japanese

could be used to specify Japanese as the locale. In this case, if the operating system
locale is Japanese_Japan.932 (the standard Japanese locale value for Win-
dows systems), then PV-WAVE will set its default locale to japanese.

UNIX and OpenVMS USERS You can check the default locale setting for your
operating system by entering one of the following commands at your operating sys-
tem prompt:

(UNIX) echo $LANG

(OpenVMS) SHOW LOGICAL SYS$LANGUAGE

584 Application Developer’s Guide

Windows USERS You can check the default locale setting for your operating
system by entering the following command at the WAVE> prompt:

WAVE> PRINT, WIN32_LOCALE()

Default Locale Setting

If PV-WAVE is unable to set the locale using the WAVE_LANG environment vari-
able or the locale.ads file, then the default locale american is used. You can
change this default for the entire PV-WAVE installation by modifying the following
line in the locale.ads file:

DEFAULT: american

For example, to change the default locale for your PV-WAVE installation to
japanese, change this line to:

DEFAULT: japanese

Localizing the PV-WAVE Home Window

NOTE The Home Window is only used in the Microsoft Windows versions of PV-
WAVE.

View the Resources

Step 1 Open the Microsoft Visual C++ Developer Studio version 5.0.

NOTE Other MSVC versions or other resource editors may work but have not
been tested.

Step 2 From the File menu, select Open. From the Open dialog box, locate the
Open As option, then select Resources from the option list.

Step 3 Open the file wavewin2.exe, located in

• Windows NT or Windows 95:
%WAVE_DIR%\bin\bin.i386nt

 585

• Alpha NT:
%WAVE_DIR%\bin\bin.ALPHAnt

The resources for wavewin2.exe now appear in a window.

Localize Your Resources

After the PV-WAVE Home Window resources are displayed, you can edit them to
suit your particular locale.

This section presents an example procedure for modifying a PV-WAVE Home
Window resource. Copies of all resources are made prior to localizing them to pre-
serve the English language resources.

Step 1 Double-click on the wavewin2.exe folder so all its subfolders are
displayed.

Step 2 Select a resource to modify. In this following example, we will modify
the Menu resources.

Step 3 Double-click on the Menu folder so its resource ID displays (in this case,
128).

Step 4 Click the right mouse button on the resource ID (in this case, 128) and
select Insert Copy from the pop-up menu.

Step 5 Select the name of your locale from the list of languages and click the
OK button.

Step 6 Double-click on the newly created menu’s resource ID. The PV-WAVE
Home Windows menu bar will appear.

Step 7 Double-click on a menu bar resource, for example, the File menu. The
Menu Item Properties dialog will display.

Step 8 Modify the text in the Caption field.

Step 9 Save the new executable when you are finished modifying the resources.

The modified resource(s) will be used next time the PV-WAVE Home Window is
started.

586 Application Developer’s Guide

Localizing the PV-WAVE Print Dialog Box

NOTE The Print dialog is only used in the Microsoft Windows versions of PV-
WAVE when the WIN32_PICK_PRINTER command is run. For more information
on this command, see the description of the Windows Metafile (WMF) Driver in
Appendix B of the PV-WAVE Reference.

View the Resources

Step 1 Open the Microsoft Visual C++ Developer Studio version 5.0.

NOTE Other MSVC versions or other resource editors may work but have not
been tested.

Step 2 From the File menu, select Open. From the Open dialog box, locate the
Open As option, then select Resources from the option list.

Step 3 Open the file vnigraph.dll, located in

• Windows NT or Windows 95:
%WAVE_DIR%\bin\bin.i386nt

• Alpha NT:
%WAVE_DIR%\bin\bin.ALPHAnt

The resources for vnigraph.dll now appear in a window.

Localize Your Resources

After the PV-WAVE Print dialog resources are displayed, you can edit them to suit
your particular locale.

This section presents an example procedure for modifying a PV-WAVE Print dia-
log resource. Copies of all resources are made prior to localizing them to preserve
the English language resources.

Step 1 Double-click on the vnigraph.dll folder so all its subfolders are
displayed.

Step 2 Double-click on the Dialog folder so its resource ID displays (in this
case, 1538).

 587

Step 3 Click the right mouse button on the resource ID (in this case, 1538) and
select Insert Copy from the pop-up menu.

Step 4 Select the name of your locale from the list of languages and click the
OK button.

Step 5 Double-click on the newly created dialog’s resource ID. The PV-WAVE
Print dialog will appear.

Step 6 Double-click on a dialog resource, for example, the Name label. The
Text Properties dialog will display.

Step 7 Modify the text in the Caption field.

Step 8 Save the new executable when you are finished modifying the resources.

The modified resource(s) will be used next time the PV-WAVE Print dialog is
selected.

588 Application Developer’s Guide

A-1

APPENDIX

A

Motif Widget Classes
This appendix lists the Motif widget classes and convenience widgets.

Motif Widget Classes
The following widget classes are defined in the file

wtxmclasses.pro

in the Standard Library. They are used as a parameter to the WtCreate function. For
example:

widget=WtCreate(’Done’, xmPushButtonWidgetClass, top)

NOTE Widget classes are only used with Widget Toolbox functions. WAVE Wid-
gets users do not need to use this appendix.

overrideShellWidgetClass

vendorShellWidgetClass

transientShellWidgetClass

topLevelShellWidgetClass

applicationShellWidgetClass

xbaeMatrixWidgetClass

A-2 Appendix A: Motif Widget Classes Application Developer’s Guide

xmArrowButtonWidgetClass

xmBulletinBoardWidgetClass

xmCascadeButtonWidgetClass

xmCommandWidgetClass

xmDialogShellWidgetClass

xmDrawingAreaWidgetClass

xmDrawnButtonWidgetClass

xmFileSelectionBoxWidgetClass

xmFormWidgetClass

xmFrameWidgetClass

xmLabelWidgetClass

xmListWidgetClass

xmMainWindowWidgetClass

xmMenuShellWidgetClass

xmMessageBoxWidgetClass

xmPanedWindowWidgetClass

xmPushButtonWidgetClass

xmRowColumnWidgetClass

xmScaleWidgetClass

xmScrollBarWidgetClass

xmScrolledWindowWidgetClass

xmSelectionBoxWidgetClass

xmSeparatorWidgetClass

xmTextWidgetClass

xmTextFieldWidgetClass

xmToggleButtonWidgetClass

xmArrowButtonGadgetClass

xmCascadeButtonGadgetClass

Convenience Widgets A-3

xmLabelGadgetClass

xmPushButtonGadgetClass

xmSeparatorGadgetClass

xmToggleButtonGadgetClass

xvnPreviewWidgetClass

Convenience Widgets
Convenience widgets allow easy manipulation of predefined groups of widgets.
Convenience widgets are unmanaged when created. To make them visible use
WtGet(..., /Manage) to manage them.

For more information on convenience widgets, see the OSF/Motif Programmer’s
Guide.

NOTE The convenience widgets listed here are not related to WAVE Widgets.

BulletinBoardDialogWidget

ErrorDialogWidget

FileSelectionDialogWidget

FormDialogWidget

InformationDialogWidget

MenuBarWidget

MessageDialogWidget

OptionMenuWidget

PopupMenuWidget

PromptDialogWidget

PulldownMenuWidget

QuestionDialogWidget

RadioBoxWidget

ScrolledListWidget

ScrolledTextWidget

A-4 Appendix A: Motif Widget Classes Application Developer’s Guide

SelectionDialogWidget

SimpleCheckBoxWidget

SimpleMenuBarWidget

SimpleOptionMenuWidget

SimplePopupMenuWidget

SimplePulldownMenuWidget

SimpleRadioBoxWidget

WarningDialogWidget

WorkAreaWidget

WorkingDialogWidget

B-1

APPENDIX

B

Motif Callback Parameters
This appendix describes the parameters that are required in callback routines for
Widget Toolbox functions under Motif.

Motif Callback Parameters
For any Widget Toolbox callback under Motif, the first five parameters are always
the same; however, some widget classes require additional callback parameters.
These required and additional parameters are described below.

NOTE The callback parameters described below are only used with Widget
Toolbox functions. WAVE Widgets users do not need to use this appendix.

Required Callback Parameters

The callback routines for all Motif widgets must have the following five
parameters. The only exception to this is when the Noparams keyword is used in
the WtCreate function. When this keyword is used, callbacks need only two
parameters, the widget and data. All callback parameters are read-only.

• widget — The widget ID.

• data — Client data passed to WtAddCallback.

• nparams — The number of callback parameters after nparams. Two are
required: reason and event.

B-2 Appendix B: Motif Callback Parameters Application Developer’s Guide

• reason — Callback reason (For example: Xm_CR...).

• event — XEvent structure. This structure contains the tag fields documented in
Appendix E, “Event Reference”, of the Xlib Reference Manual, Volume 2,
(O’Reilly & Associates, Inc., 1989) and an event tag, which contains the
address of the XEvent structure.

See the OSF/Motif Programmer's Reference for more information on callback
parameters.

Additional Required Callback Parameters

This section lists additional required callback parameters for the Motif widget
classes.

NOTE Callbacks for the XbaeMatrix (table) widget and XvnPreview widget are
discussed in supplemental XbaeMatrix and XvnPreview documentation, which
you can find in the following files:

<wavedir>/docs/widgets/matrix_motif.ps

<wavedir>/docs/widgets/preview_motif.ps

Where <wavedir> is the main PV-WAVE directory.

You can print these files on any PostScript printer.

ArrowButton

• click_count — Number of clicks. Only specified if the callback reason is
XmCR_ACTIVATE. See the OSF/Motif Programmer’s Reference for more
information.

Command

• command — A string containing the last command entered.

• length — Length of the command.

DrawingArea

• window — Window ID of the drawing area.

DrawnButton

• window — Window ID of the drawn button.

Motif Callback Parameters B-3

• click_count — Number of clicks. Only specified if the callback reason is
XmCR_ACTIVATE. See the OSF/Motif Programmer’s Reference for more
information.

FileSelection

• filespec — A string containing the file specification.

• filespeclen — File specification length.

• mask — A string containing the directory/file mask.

• masklen — The directory/file mask length.

• dir — A string containing the directory.

• dirlen — Directory length.

• pattern — A string containing the file search pattern.

• patternlen — The file search pattern length.

List

• item — A string containing the last selected item.

• itemlen — The last selected item length.

• position — Position of the last selected item (for callback reasons
XmCR_MULTIPLE_SELECT and XmCR_EXTENDED_SELECT).

• selected_items — An array of strings containing selected items.

• positions — An array of long integers specifying positions of the selected
items.

• count — Number of selected items.

• selectiontype — Type of selection (XmINITIAL, XmMODIFICATION,
XmADDITION).

PushButton

• click_count — Number of clicks. Only specified if the callback reason is
XmCR_ACTIVATE. See the OSF/Motif Programmer’s Reference for more
information.

RowColumn

The following parameters are only used only if the callback reason is
XmCR_ACTIVATE.

B-4 Appendix B: Motif Callback Parameters Application Developer’s Guide

• widget — Widget ID of the selected RowColumn item.

• button — Button number of the selected button.

• click_count — Number of clicks. For more information, see the OSF/Motif
Programmer’s Reference.

Scale

• value — New slider value.

ScrollBar

• value — New slider value.

• pixel — X-coordinate of the mouse button for horizontal direction; y-coordi-
nate of the mouse button for vertical direction. Used only for the
XmCR_TO_BOTTOM and Xm_CR_TO_TOP callback reasons.

Selection

• selection — A string containing the selection.

• selectionlen — Selected string length.

Text, TextField

For the callback reasons:

XmCR_LOSING_FOCUS,
XmCR_MODIFYING_TEXT_VALUE,
XmCR_MOVING_INSERT_CURSOR

• doit — Return value indicating if action is performed — must be declared as a
long (e.g.: doit = OL).

• currInsert — Current position of insert cursor.

• newInsert — New position of insert cursor.

For the callback reasons:

XmCR_MODIFYING_TEXT_VALUE,
XmCR_MOVING_INSERT_CURSOR

• startPos — Starting position of the text to modify.

• endPos — Ending position of the text to modify.

For the callback reason:

Motif Callback Parameters B-5

XmCR_MODIFYING_TEXT_VALUE

• text — A string containing the text to be inserted.

• textlen — Text length.

• format — Format of the text.

ToggleButton

• value — The toggle button’s current state.

B-6 Appendix B: Motif Callback Parameters Application Developer’s Guide

C-1

APPENDIX

C

Widget Toolbox Cursors
This appendix lists the standard and custom cursors that are available for use with
the WtCursor function.

Standard X Cursors
For detailed information on the following cursors, see Appendix I of the Xlib Ref-
erence Manual, Volume 2, O’Reilly & Associates, Inc.

Windows USERS Only the cursors preceded by * are available on Windows
platforms.

XC_X_cursor

* XC_arrow

XC_based_arrow_down

XC_based_arrow_up

XC_boat

XC_bogosity

* XC_bottom_left_corner

* XC_bottom_right_corner

* XC_bottom_side

C-2 Appendix C: Widget Toolbox Cursors Application Developer’s Guide

XC_bottom_tee

XC_box_spiral

XC_center_ptr

XC_circle

XC_clock

XC_coffee_mug

XC_cross

XC_cross_reverse

* XC_crosshair

XC_diamond_cross

XC_dot

XC_dotbox

XC_double_arrow

XC_draft_large

XC_draft_small

XC_draped_box

XC_exchange

* XC_fleur

XC_gobbler

XC_gumby

XC_hand1

XC_hand2

XC_heart

XC_icon

XC_iron_cross

* XC_left_ptr

* XC_left_side

XC_left_tee

XC_leftbutton

Standard X Cursors C-3

XC_ll_angle

XC_lr_angle

XC_man

XC_middlebutton

XC_mouse

XC_pencil

XC_pirate

XC_plus

XC_question_arrow

XC_right_ptr

* XC_right_side

XC_right_tee

XC_rightbutton

XC_rtl_logo

XC_sailboat

XC_sb_down_arrow

XC_sb_h_double_arrow

XC_sb_left_arrow

XC_sb_right_arrow

XC_sb_up_arrow

XC_sb_v_double_arrow

XC_shuttle

XC_sizing

XC_spider

XC_spraycan

XC_star

XC_target

XC_tcross

* XC_top_left_arrow

C-4 Appendix C: Widget Toolbox Cursors Application Developer’s Guide

XC_top_left_corner

* XC_top_right_corner

* XC_top_side

XC_top_tee

XC_trek

XC_ul_angle

XC_umbrella

XC_ur_angle

* XC_watch

XC_xterm

Custom Cursors
The following custom cursors were developed by Visual Numerics and are avail-
able for use with WtCursor:

WIDGET_WAIT_CURSOR

WIDGET_DEFAULT_CURSOR

WIDGET_CROSSHAIR_CURSOR

WIDGET_X_CURSOR

WIDGET_ARROW_CURSOR

WIDGET_VCOLORBAR_CURSOR

WIDGET_HCOLORBAR_CURSOR

WIDGET_MACRO_PLAY_CURSOR

WIDGET_MACRO_RECORD_CURSOR

WIDGET_MAGNIFIER_CURSOR

WIDGET_PREV_FIELD_CURSOR

WIDGET_PREV_HEADER_CURSOR

WIDGET_PREV_RECORD_CURSOR

WIDGET_PROF_COL_CURSOR

Custom Cursors C-5

WIDGET_PROF_END_CURSOR

WIDGET_PROF_ROW_CURSOR

WIDGET_VIEWFINDER_CURSOR

WIDGET_CAUTION_CURSOR

C-6 Appendix C: Widget Toolbox Cursors Application Developer’s Guide

D-1

APPENDIX

D

Developing Portable Applications
With PV-WAVE version 6.0 and later versions, it is possible to write PV-WAVE
GUI applications that are portable between Motif-based and Microsoft Windows-
based systems. Some consideration needs to be given to the design of such appli-
cations to ensure they are indeed portable between the two systems. While the vast
majority of the commands that comprise the PV-WAVE language will run on all
platforms, special consideration to the WAVE Widgets commands in particular is
required.

Writing Portable WAVE Widgets Applications
When WAVE Widgets applications were designed with previous versions of
PV-WAVE, use of WAVE Widgets (Ww) and Widget Toolbox (Wt) routines could
be mixed freely to create the desired interface. However, when writing an applica-
tion targeted for both Microsoft Windows and Motif, use of Widget Toolbox (Wt)
commands is not recommended. In particular, Motif constants as defined in the
wtxmconsts.pro and wtxmclasses.pro files have their Microsoft Windows
counterparts in the files wtwacconsts.pro and wtwacclasses.pro. These dif-
ferences as well as others are folded into the Ww layer routines to provide a
common Application Programming Interface (API). Hence, to create a portable
application, the general rule is to use the Ww layer routines to access Wt layer
functionality.

Every effort has been made to encapsulate as much of the common functionality as
is practical in the Ww layer routines.

D-2 Appendix D: Developing Portable Applications Application Developer’s Guide

Commands and Filenames

One of the major considerations that affects applications written to run on multiple
windowing systems is the differing system commands and file naming conventions
imposed by the underlying operating systems. Several PV-WAVE commands are
available to help eliminate these differences by constructing pathnames given a
filename. These commands are listed in the following table.

In addition, standard PV-WAVE directories can be referenced by using system
variables to avoid having to specify platform-specific filenames. In particular the
following system variables can be used to specify files in PV-WAVE directories:

In cases where the above commands cannot be used to construct the filename, it is
important to follow the conventions of the operating systems, as described in the
following table.

It is also important to remember that since the colon character (:) is used as a valid
part of filenames on OpenVMS and Microsoft Windows, a colon should not be
used to separate directories in a path list if one is required. By convention, the
comma character (,) is used to separate pathnames on OpenVMS systems and the

Command Purpose

DEL_FILE Deletes a file.

FINDFILE Searches for files given a file specification.

FILEPATH Constructs pathnames to PV-WAVE files.

Directory Description

!Dir The top level PV-WAVE directory.

!Data_Dir The PV-WAVE data directory.

Platform Format
Case
Sensitive

UNIX /dir1/dir2/.../file Yes

OpenVMS DISK:[DIR1.DIR2...]FILE.EXT No

Microsoft
Windows

Drive:\dir1\dir2\...\file.ext No

Writing Portable WAVE Widgets Applications D-3

semi-colon (;) on Microsoft Windows systems. Since UNIX filenames may not
contain the colon character, it is used to separate directories on UNIX platforms.

WwGetKey Routine

Due to differences in the underlying implementation of event/message processing,
differences exist in the processing of key events between Motif and Microsoft Win-
dows. The WwGetKey routine bridges the majority of these differences. However,
when using the Keysym keyword with WwGetKey, differences in values may be
seen, especially in the translation of unprintable keys like <Delete> or <Return>.

Specifying WAVE Widget Fonts

On Motif-based systems, it is possible to customize WAVE Widgets that contain
text by changing the font in which the text is displayed. This is often done by spec-
ifying the Font keyword in the WAVE Widget (Ww) routine call. It is also possible
to change the font through a call to WwSetValue or by specifying the font in a
resource file.

The Microsoft Windows version of PV-WAVE 6.0 does not provide support for
changing widget fonts. Widgets that display text will do so using the default
Microsoft Windows system font. One notable exception is the Preview widget.
Because of the column-oriented nature of the widget, it cannot be used effectively
with a proportional font and therefore displays in the default fixed width font.

TIP All requests to change a widget font will be accepted without issuing an error,
but will not alter the displayed font.

Display Sizes

Keep in mind when writing GUI applications for Microsoft Windows that some
systems may be running at lower resolutions. It is not uncommon for Microsoft
Windows to be configured at 800x600, or 640x480, which is significantly lower
than the standard resolution of most workstation displays. This is important when,
for instance, drawn buttons are displayed. Since bitmaps are used as the image in
the button, the size cannot be reduced without altering the bitmap. The PV-WAVE
Navigator application has a Lowres keyword that reconfigures the button bar to dis-
play two rows of buttons to account for lower resolution displays. The Lowres
keyword also reduces the size of the drawing area in graphics VDA Tools to better
fit the display.

D-4 Appendix D: Developing Portable Applications Application Developer’s Guide

Windows Graphics

Both OpenVMS and UNIX platforms use the X Windows graphics driver and thus
behave identically. The Win32 driver, which is used to provide PV-WAVE graphics
on Microsoft Windows-based systems, was written to be compatible with the
X Windows driver in as many ways as possible; however, several notable differ-
ences exist between the two.

Graphics Cache

To be more efficient, the Win32 graphics driver now uses buffered output. This
leads to rare occasions where a program needs to be certain that data are not wait-
ing in a buffer, but have actually been output. The most common side-effect of
buffered graphics is seen in improperly stacked graphics. The EMPTY procedure
can be used to flush all buffered output.

EMPTY is a low-level graphics routine. PV-WAVE graphics routines generally
handle the flushing of buffered data transparently, so the need for EMPTY is rare.
Graphics VDA Tools writers will need to be more aware of buffered graphics to
ensure proper stacking of the Graphical Elements with respect to the tool’s
graphics.

When executed on a device that does not use buffered output, the EMPTY
command has no effect.

Color Tables

The handling of color tables differs somewhat between the X Windows and the
Microsoft Windows platforms. For the sake of this discussion, the assumption is
that X Windows is running in 8-bit pseudo-color mode and Microsoft Windows is
running in 256-color mode, since these modes are where differences are most
apparent.

In X Windows, colormap entries are allocated, if available, in a shared colormap.
This colormap is shared between all the applications running on the workstation
and is limited to 256 entries. In PV-WAVE, entries in this shared colormap are
reserved when the first graphics window is created. It is possible at the time of this
allocation to limit the number of colormap entries reserved by specifying the Col-
ors keyword to the WINDOW command.

The value specified with the Colors keyword can take two forms: 1) A positive
value n, specifying “allocate n entries” or 2) A negative value –n, specifying “allo-
cate all but n entries.” The value of the PV-WAVE system variable !D.N_Colors
reports the actual number of color indices available.

Writing Portable WAVE Widgets Applications D-5

Microsoft Windows differs from X Windows in several respects. First, colormaps
are not specifically shared between applications. The currently active application,
known as the “foreground” application, has its colormap installed and its colors are
displayed correctly. All other applications are given the foreground application’s
colormap and attempt to display their data as best they can. Secondly, the Win32
driver has access to a 256-color palette. Of these colors, 20 are reserved for
Microsoft Windows GUI elements, leaving 236 colors. For efficiency and compat-
ibility reasons the driver indicates that it has 256 colors and the variable
!D.N_Colors reports 256. In actuality, 20 of those colors are simply mappings into
the closest available color of the other 236 colors.

On Microsoft Windows, the Colors keyword to the WINDOW command has no
effect.

Graphics Function

The DEVICE command provides support for setting alternative graphics functions
through the Set_Graphics_Function keyword. The graphics function is a logical
function that specifies how the source pixel values generated by a graphics opera-
tion are combined with the pixel values already present on the screen.

Graphics functions operate on pixel values. Hence, If you are combining pixel val-
ues 7 (00000111) and 21 (00010101) with the XOR operation, the resulting pixel
value would be 18 (00010010). The actual color on the screen will be dependent
on the installed colormap.

Since the PV-WAVE X Windows driver allocates colors in a shared colormap, the
color values specified in PV-WAVE commands do not translate directly into
X Windows pixel values. For example, the command

PLOT, y, Color=0

specifies color 0 for the plotted line. This will not likely result in pixel value 0 being
used, since 0 is typically reserved by the window manager. The Color keyword’s
value is translated into a pixel value and the graphics function is applied to this
value.

On Microsoft Windows-based systems, since colormaps are not shared among
applications, color values translate directly into pixel values and the results may
differ greatly from X Windows. One notable example is in using the XOR graphics
function with the Color keyword value as 0. On X Windows, as explained above,
the pixel value used with the XOR function will likely not be 0 and will be com-
bined with the destination pixels and drawn in a third pixel value. On Microsoft
Windows, the color value 0 maps into the pixel value 0. Thus, when combined with
the destination pixel values, according to the XOR function’s rules, the resulting

D-6 Appendix D: Developing Portable Applications Application Developer’s Guide

pixel values will be exactly the same as the destination pixels and the graphics will
appear unchanged.

WINDOW Keyword Differences

Several keywords to the WINDOW command that are specific to the X Windows
driver have been altered to better fit the Microsoft Windows parlance. The follow-
ing table lists X Windows keywords and the Microsoft Windows counterparts.

NOTE For compatibility reasons, the X Windows WINDOW command keywords
will also work on Microsoft Windows.

Writing Portable VDA Tools
In addition to the topics covered previously on writing portable WAVE Widgets
applications, several special considerations need to be made when developing
VDA Tools for use on Microsoft Windows and Motif platforms.

VDA Utilities and Tools Manager Routines

First, the VDA Utilities (Wo) and Tools Manager (Tm) routines have been specif-
ically designed to work on all PV-WAVE platforms and their use is highly
encouraged. In situations where differences exist between systems, for instance in
file-naming conventions, VDA Utilities routines help bridge the differences.

VDA Tools Resource Files

VDA Tools make extensive use of resource files for internationalization and cus-
tomization. These resource files are portable between the Motif and Microsoft
Windows systems. However, a few notable differences exist. First, the VDA Tools’

X Windows Microsoft Windows

Get_XWin_ID Get_Win_ID

Set_XWin_ID Set_Win_ID

Pixmap Bitmap

Writing Portable VDA Tools D-7

global resource file is different between the various systems. The following table
defines this usage:

The appropriate global resource file is loaded automatically when the VDA Tools
environment is initialized, so knowledge of this difference is only important when
changes or additions are made to the global resources.

Secondly, the bitmap format used for drawn buttons and icons is different between
the Motif and Microsoft Windows systems. Motif uses the xbm (X Bitmap) format
to specify bitmaps and the pm (Pixmap) format for pixmaps. Microsoft Windows
uses the BMP format for both. The VDA Utility routine WoBuildResourceFile-
name can be used to construct the correct path given the filename.
WoBuildResourceFilename builds a path internally, which it then searches to
locate the files. For Microsoft Windows platforms, the vdatools\windows
directory will be searched prior to the vdatools directory. Exploiting this fea-
ture, the following code segment from the file $WAVE_DIR/lib/vdatools/
wographicsbuttons.pro shows one method of specifying drawn buttons by
using the WoBuildResourceFilename routine:

IF STRMATCH(!Version.OS, '[Ww][Ii][Nn]') $
THEN ext = '.bmp' $

ELSE ext = '.xbm'

graphics_buttons_toggle = {, $

LAYOUT_NAME: 'graphicsButtons_1', $

DESCRIPTOR: 'redraw', $

CALLBACK: 'WoGBBRedrawCB', $

STATUS_CALLBACK: 'WoGBBRedrawStatusCB', $

INSENSITIVE_PIXMAP: $
WoBuildResourceFilename$
('redrawoperationx'+ext), $

PIXMAP: WoBuildResourceFilename$
(&'redrawoperation'+ext), $

DESCRIPTOR: 'cut', $

CALLBACK: 'WoGBBCutCB', $

STATUS_CALLBACK: 'WoGBBCutStatusCB', $

Platform Global Resource File

UNIX $WAVE_DIR/xres/american/vdatools/VDATools

OpenVMS WAVE_DIR:[XRES.AMERICAN.VDATOOLS]VDATOOLS.DAT

Windows %WAVE_DIR%\xres\american\vdatools\windows\wzglobal.ad

D-8 Appendix D: Developing Portable Applications Application Developer’s Guide

INSENSITIVE_PIXMAP: $
WoBuildResourceFilename$
('cutoperationx'+ext), $

PIXMAP: WoBuildResourceFilename$
('cutoperation'+ext), $

.

.

.

NOTE The VDA utilities routine WoSetToolIcon requires a filename without an
extension and constructs the correct path name in all systems.

Writing System-specific Code
In situations where system-specific code is necessary, for instance when specifying
a filename, the !Version.OS system variable can be used to determine which system
is running the procedure. For instance the following code segment allows different
commands to be executed for Microsoft Windows (Windows 95 and Windows
NT), UNIX, and OpenVMS systems:

IF STRMATCH(!Version.OS, '[Ww][Ii][Nn]') $
THEN BEGIN

; Windows code

ENDIF ELSE IF STRMATCH(!Version.OS, $
'[Vv][Mm][Ss]')

; VMS code

ENDIF ELSE BEGIN

; Unix code

ENDELSE

Furthermore, if a more specific distinction needs to be made between operating
systems at runtime, use the value of the !Version.OS system variable for your plat-
form as defined in the following table:

Platform Operating System !Version.OS

Digital Alpha OpenVMS vms

Digital Alpha Digital UNIX OSF1

Example Code D-9

Example Code
Several good examples of portable code are available in your PV-WAVE (version
6 and later) distribution. One good source is the PV-WAVE Gallery, found in the
gallery directory.

The PV-WAVE procedure files defined is this directory are completely portable
between Microsoft Windows and Motif.

Another good set of examples of portable code is the VDA Tools. These are written
to be portable between Microsoft Windows and Motif using the VDA Utilities and
Tools Manager routines to bridge system differences. The following table shows
the location of the VDA Tools routines.

Digital VAX OpenVMS vms

HP 9000/s700 HPUX hp-ux

IBM RS/6000 AIX AIX

Intel 486, Pentium Microsoft Windows NT Windows-NT

Intel 486, Pentium Microsoft Windows 95 Windows

Silicon Graphics IRIX IRIX

Sun4/SPARC Solaris solaris

Sun4/SPARC SunOS sunos

Platform Gallery Directory

UNIX $WAVE_DIR/demo/gallery3

OpenVMS WAVE_DIR:[demo.gallery3]

Microsoft Windows %WAVE_DIR%\demo\gallery3

Platform Operating System !Version.OS

D-10 Appendix D: Developing Portable Applications Application Developer’s Guide

For examples of portable non-graphics as well as graphics code, consult the
PV-WAVE Standard Library procedures found in:

Platform VDA Tools Directory

UNIX $WAVE_DIR/lib/vdatools

OpenVMS WAVE_DIR:[lib.vdatools]

Microsoft Windows %WAVE_DIR%\lib\vdatools

Platform Standard Library Directory

UNIX $WAVE_DIR/lib/std

OpenVMS WAVE_DIR:[lib.std]

Microsoft Windows %WAVE_DIR%\lib\std

E-1

APPENDIX

E

Virtual Keys
The following table shows the symbolic constant names, hexadecimal values, and
keyboard equivalents for the virtual-key codes used by the Microsoft Windows
operating system. The codes are listed in numeric order.

Symbolic Constant
Name

Hexadecimal
Value

Mouse or Keyboard
Equivalent

VK_LBUTTON 01 Left mouse button

VK_RBUTTON 02 Right mouse button

VK_CANCEL 03 Control-break processing

VK_MBUTTON 04 Middle mouse button (three-
button mouse)

05-07 Undefined

VK_BACK 08 BACKSPACE key

VK_TAB 09 TAB key

0A-0B Undefined

VK_CLEAR 0C CLEAR key

VK_RETURN 0D ENTER key

0E-0F Undefined

VK_SHIFT 10 SHIFT key

E-2 Appendix E: Virtual Keys Application Developer’s Guide

VK_CONTROL 11 CTRL key

VK_MENU 12 ALT key

VK_PAUSE 13 PAUSE key

VK_CAPITAL 14 CAPS LOCK key

15-19 Reserved for Kanji systems

1A Undefined

VK_ESCAPE 1B ESC key

1C-1F Reserved for Kanji systems

VK_SPACE 20 SPACEBAR

VK_PRIOR 21 PAGE UP key

VK_NEXT 22 PAGE DOWN key

VK_END 23 END key

VK_HOME 24 HOME key

VK_LEFT 25 LEFT ARROW key

VK_UP 26 UP ARROW key

VK_RIGHT 27 RIGHT ARROW key

VK_DOWN 28 DOWN ARROW key

VK_SELECT 29 SELECT key

2A Original equipment manu-
facturer (OEM) specific

VK_EXECUTE 2B EXECUTE key

VK_SNAPSHOT 2C PRINT SCREEN key for
Windows 3.0 and later

VK_INSERT 2D INS key

VK_DELETE 2E DEL key

VK_HELP 2F HELP key

Symbolic Constant
Name

Hexadecimal
Value

Mouse or Keyboard
Equivalent

 E-3

VK_0 30 0 key

VK_1 31 1 key

VK_2 32 2 key

VK_3 33 3 key

VK_4 34 4 key

VK_5 35 5 key

VK_6 36 6 key

VK_7 37 7 key

VK_8 38 8 key

VK_9 39 9 key

3A-40 Undefined

VK_A 41 A key

VK_B 42 B key

VK_C 43 C key

VK_D 44 D key

VK_E 45 E key

VK_F 46 F key

VK_G 47 G key

VK_H 48 H key

VK_I 49 I key

VK_J 4A J key

VK_K 4B K key

VK_L 4C L key

VK_M 4D M key

VK_N 4E N key

VK_O 4F O key

Symbolic Constant
Name

Hexadecimal
Value

Mouse or Keyboard
Equivalent

E-4 Appendix E: Virtual Keys Application Developer’s Guide

VK_P 50 P key

VK_Q 51 Q key

VK_R 52 R key

VK_S 53 S key

VK_T 54 T key

VK_U 55 U key

VK_V 56 V key

VK_W 57 W key

VK_X 58 X key

VK_Y 59 Y key

VK_Z 5A Z key

5B-5F Undefined

VK_NUMPAD0 60 Numeric keypad 0 key

VK_NUMPAD1 61 Numeric keypad 1 key

VK_NUMPAD2 62 Numeric keypad 2 key

VK_NUMPAD3 63 Numeric keypad 3 key

VK_NUMPAD4 64 Numeric keypad 4 key

VK_NUMPAD5 65 Numeric keypad 5 key

VK_NUMPAD6 66 Numeric keypad 6 key

VK_NUMPAD7 67 Numeric keypad 7 key

VK_NUMPAD8 68 Numeric keypad 8 key

VK_NUMPAD9 69 Numeric keypad 9 key

VK_MULTIPLY 6A Multiply key

VK_ADD 6B Add key

VK_SEPARATOR 6C Separator key

VK_SUBTRACT 6D Subtract key

Symbolic Constant
Name

Hexadecimal
Value

Mouse or Keyboard
Equivalent

 E-5

VK_DECIMAL 6E Decimal key

VK_DIVIDE 6F Divide key

VK_F1 70 F1 key

VK_F2 71 F2 key

VK_F3 72 F3 key

VK_F4 73 F4 key

VK_F5 74 F5 key

VK_F6 75 F6 key

VK_F7 76 F7 key

VK_F8 77 F8 key

VK_F9 78 F9 key

VK_F10 79 F10 key

VK_F11 7A F11 key

VK_F12 7B F12 key

VK_F13 7C F13 key

VK_F14 7D F14 key

VK_F15 7E F15 key

VK_F16 7F F16 key

VK_F17 80H F17 key

VK_F18 81H F18 key

VK_F19 82H F19 key

VK_F20 83H F20 key

VK_F21 84H F21 key

VK_F22 85H F22 key

VK_F23 86H F23 key

Symbolic Constant
Name

Hexadecimal
Value

Mouse or Keyboard
Equivalent

E-6 Appendix E: Virtual Keys Application Developer’s Guide

VK_F24 87H F24 key

88-8F Unassigned

VK_NUMLOCK 90 NUM LOCK key

VK_SCROLL 91 SCROLL LOCK key

92-B9 Unassigned

BA-C0 OEM specific

C1-DA Unassigned

DB-E4 OEM specific

E5 Unassigned

E6 OEM specific

E7-E8 Unassigned

E9-F5 OEM specific

F6-FE Unassigned

Symbolic Constant
Name

Hexadecimal
Value

Mouse or Keyboard
Equivalent

F-1

APPENDIX

F

Windows Color and Font Support
Color and font support have been implemented for WAVE Widgets on Windows
platforms.

To specify widget colors, use the Background, Foreground, and Basecolor key-
words as documented for UNIX systems. The following file,

(Windows) <wavedir>\lib\std\windows\rgb.txt

lists the names of the available colors, where <wavedir> is the main PV-WAVE
directory.

NOTE This file in the Windows platform is a reference only; modifying the file
won’t affect the colors used by PV-WAVE.

Predefined Colors for Windows Systems
In addition to the colors listed in the rgb.txt file, you may use any of the follow-
ing predefined Windows system colors as your widget colors.

Windows System Colors Corresponding Widget Color

COLOR_3DDKSHADOW Dark shadow for 3D display elements

COLOR_3DFACE,
COLOR_BTNFACE

Face color for 3D display elements

F-2 Appendix F: Windows Color and Font Support Application Developer’s Guide

COLOR_3DHILIGHT,
COLOR_3DHIGHLIGHT,
COLOR_BTNHILIGHT,
COLOR_BTNHIGHLIGHT

Highlight color for 3D display elements (for
edges facing the light source)

COLOR_3DLIGHT Light color for 3D display elements (for
edges facing the light source)

COLOR_3DSHADOW,
COLOR_BTNSHADOW

Shadow color for 3D display elements (for
edges facing away from the light source)

COLOR_ACTIVEBORDER Active window border

COLOR_ACTIVECAPTION Active window caption

COLOR_APPWORKSPACE Background color of multiple document
interface (MDI) applications

COLOR_BACKGROUND,
COLOR_DESKTOP

Desktop

COLOR_BTNTEXT Text on push buttons

COLOR_CAPTIONTEXT Text in caption, size box, and scroll bar arrow
box

COLOR_GRAYTEXT Grayed (disabled) text; this color is set to 0 if
the current display driver does not support a
solid gray color.

COLOR_HIGHLIGHT Items selected in a control

COLOR_HIGHLIGHTTEXT Text of selected items in a control

COLOR_INACTIVEBORDER Inactive window border

COLOR_INACTIVECAPTION Inactive window caption

COLOR_INFOBK Color of text in an inactive caption

COLOR_INFOTEXT Text color for tool tip controls

COLOR_MENU Menu background

COLOR_MENUTEXT Text in menus

COLOR_SCROLLBAR Scroll bar gray area

COLOR_WINDOW Window background

Windows System Colors Corresponding Widget Color

Setting Fonts on Windows F-3

Specifying XtDefaultForeground or XtDefaultBackground causes
the widget to use the appropriate Windows system colors.

Setting Fonts on Windows
On Windows, use the MSFont keyword to specify fonts for use in WAVE Widgets.
The MSFont keyword is specified as a string of the following form:

MSFont = ’face_name, point size, attribute’

where face_name specifies the type face, and attribute specifies font
attributes such as bold, italic, underline, etc.

For example: MSFont = ’Arial, 8, bold’

You can also specify Windows system fonts as shown in the following table.

COLOR_WINDOWFRAME Window frame

COLOR_WINDOWTEXT Text in windows

Windows System Fonts Corresponding Widget Fonts

ANSI_FIXED Windows fixed-pitch (monospace) system font.

ANSI_VAR Windows variable-pitch (proportional space) system
font.

DEFAULT_GUI Windows 95/NT 4.0 only: Default font for user inter-
face objects such as menus and dialog boxes.

DEVICE_DEFAULT Windows NT only: Device-dependent font.

OEM_FIXED Original equipment manufacturer (OEM) dependent
fixed-pitch (monospace) font.

SYSTEM_VAR By default, Windows uses the system font to draw
menus, dialog box controls, and text. In Windows ver-
sions 3.0 and later, the system font is a proportionally
spaced font; earlier versions of Windows used a
monospace system font.

Windows System Colors Corresponding Widget Color

F-4 Appendix F: Windows Color and Font Support Application Developer’s Guide

If the font you specify isn’t supported on your system, Windows substitutes another
font, usually the system font.

SYSTEM_FIXED Fixed-pitch (monospace) system font used in Win-
dows versions earlier than 3.0. This font is provided
for backwards compatibility with earlier versions of
Windows.

Windows System Fonts Corresponding Widget Fonts

 1

Index

A
accessing data in PV-WAVE (Windows) 109
annotation

embbed in text grael 496
applications, noninteractive 57, 114
attributes

resource file 204

B
Bourne shell 3, 9

C
C programming language. See format strings;

interapplication communication
C programs

accessing PV-WAVE’s variable data
space from 109–110

running PV-WAVE from (Windows) 100
C shell 9
callback

See also Widget Toolbox
adding to a widget 222
definition of 164, 222
for menu button 176
list 222
parameters, Motif B-2–B-5
reason 222

calling PV-WAVE. See interapplication
communication

CALL_UNIX function 59–76
CALL_WAVE procedure 68–77
CD procedure 13
child processes, spawning 19–20
client

See also interapplication
communication; servers; sockets

C program as 77
definition of 59
linking with PV-WAVE 61
PV-WAVE as (CALL_UNIX) 61, 73–

76, 80
closing

socket connection 89
widget hierarchy 207, 210, 221

color
in resource file 165
rgb.txt F-1
setting colors for WAVE Widgets 201
specifying by name 201
Windows system F-1

command interpreter, VMS 9
common block

not needed with user data 207
used to pass client data 222–225

compiling
external programs 22
under UNIX for LINKNLOAD 33, 35

console, Windows 119
cursor

custom C-4
used with WtCursor C-1

cwavec routine 37–42, 99
See also interapplication

communication
cwavefor routine 37–42, 99

See also interapplication
communication

2 Application Developer’s Guide

D
data

accessing with wavevars 50, 109
dde

overview 116
server, initializing 116
topics 117
using 116

dialog box
alert popup 233
generic 262

dll file, building 112
dynamic

linking 113

E
embedded text, in text graels 496
end of file

when applied to a pipe 19
ENVIRONMENT function 4
environment variables

adding 3
changing 2
get values of 4
returning 4
setting 3
SHELL 3
translating 4

EOF function 19
event handler. See Widget Toolbox
event loop, handling with Widgets 57, 114
exiting

cwavec interactive mode 39
cwavefor interactive mode 44, 104

F
files

See also data; input/output; reading;
writing

fonts
setting fonts for WAVE Widgets 203
specifying by name 203
Windows system F-3

FORTRAN programming language
See also format strings; interapplication

communication

G
grael. See VDA Tools, graphical elements
graphical element. See VDA Tools,

graphical elements
graphical user interface development. See

VDA Tools, WAVE Widgets, Widget
Toolbox

GUI development. See graphical user
interface development

H
help, online

adding to 155
in VDA Tools 152

home window
localizing 584

I
input/output

capturing output 12
UNIX pipes 19

interapplication communication
accessing external functions 27–36
bidirectional and unidirectional 17
C programs

accessing variable data space of
PV-WAVE from 50–51

as a client 77
as a server 75
calling from PV-WAVE 20
calling PV-WAVE from 24, 40
CALL_WAVE 70
CALL_WAVE as a client 77
end session with waveterm 24
linking to PV-WAVE 24, 48, 50
loading a UT_VAR 81, 84
running PV-WAVE from 39, 44,

104
sendingcommandstoPV-WAVE

24
SETBUF function 20–21
used with CALL_UNIX 63
w_cmpnd_reply 66

 3

w_get_par 64
w_listen 64
w_send_reply 65
w_smpl_reply 65

calling PV-WAVE
callwave object module 22
cwavec routine 37, 42, 43, 99, 103
cwavefor routine 37, 42, 99, 103
from a C program 24, 40
from a FORTRAN program (wavec-

md) 26
from a statically linked program 37,

98
from an external program 22
unidirectionally 22

child process 19
dll file, building 112
FORTRAN programs

calling PV-WAVE from 26
exiting PV-WAVE with waveterm 24
linking to PV-WAVE 49
sending commands to PV-WAVE 24

linking
applications to PV-WAVE 48
C program under VMS 50
client with PV-WAVE 61
dynamic on Windows 113
FORTRAN applications under UNIX

49
LINKNLOAD function 30, 32, 33

accessing external functions 98,
112

calling external programs 96
LoadWave() 113
methods of 15, 93
pipes 19
relinking on Solaris 47
sample applications 120
sockets

closing 89
connecting to 88
continuous server 92
example 89
initializing 87
loading the OPI 87
overview 86
reading/writing data 89

using SPAWN 19

with a child process 19
with C application 118
with RPCs (remote procedure calls)

59
internationalization 581
interprocess communication. See

interapplication communication

K
Korn shell 9

L
linking. See interapplication

communication
LINKNLOAD function 18, 27
list widget, managing 287
LoadWave() 113
localization 581
logical names

deleting 6
returning 5
setting 5

longword
integer, on Digital UNIX 28

loop, event. See event loop

M
makefile 48

See also interapplication
communication

menus, creating 173–179
message

popup 191
methods, definition of 131
MSFont keyword 204, F-3

N
Navigator

See also VDA Tools
creating 146, 147
directory structure 146
hierarchy in VDA Tool architecture

124
introduction 146

4 Application Developer’s Guide

main program file 147
menu bar 146
modifying 147
starting VDA Tools 123
VDA Tool interface 121
VDA Tools 146
X resources 148

nonblocking Widgets 114
noninteractive applications 57, 114

O
object modules 22

See also interapplication communication
operating system

accessing using SPAWN 7
communicating with 1

OPI applications
Windows 113

P
pipes, UNIX 19

See also interapplication communication;
UNIX operating system

POPD procedure 13
print dialog box, localizing 586
PRINTD procedure 13
processes

spawning 7–8
programming

setting resources 205
tips 231
WAVE Widgets 162
Widget Toolbox 217

PUSHD procedure 13

R
resizing windows 115
resource

defining 220
file 165, 219
how to use 204
introduction 148
setting for Widget Toolbox 220
using in PV-WAVE 150
value data type 221

rgb.txt F-1
RPC

See also interapplication
communication

description of 59
example, CALL_UNIX 73–80
on Solaris systems 73
synchronization of processes 60

S
separator, widget 332
servers

See also client; interapplication
communication

C program 75
definition of 59
example program (test_server.c) 67
linking with PV-WAVE 61
PV-WAVE as 68–70, 84–85
UNIX_REPLY function 72

setbuf() C function 20
signal processing

See also filters; highpass filters;
lowpass filters

SPARCworks compiler 47
SPAWN procedure 7, 17

See also interapplication
communication

avoiding shell processes 9
when to use 94

spawning a process 7–12
starting PV-WAVE

from an external program 23
statically linked programs 37, 98
stdio facility 20
strings

introduction 148
key names 386
string files 150
using in PV-WAVE 150

STRLOOKUP function 151
subsystem, Windows 119
symbols

VMS
deleting 7
setting 6

 5

T
tables

GUI tool, creating 200, 339
widget for 200, 401
widget management 346

timer, adding 224
TmAddGrael procedure 473
TmAddSelectedGrael procedure 474
TmAddSelectedVars procedure 413
TmAddVar procedure 415
TmAxis procedure 475
TmBitmap procedure 477
TmBottomGrael procedure 478
TmCodeGen procedure 416
TmCopy procedure 417
TmCut procedure 418
TmDelete procedure 420
TmDelGrael procedure 479
TmDelSelectedGrael procedure 480
TmDelVar procedure 419
TmDeselectVars procedure 421
TmDynamicDisplay procedure 423
TmEndCodeGen procedure 425
TmEnumerateAttributes procedure 426
TmEnumerateGrael function 482
TmEnumerateGraelMethods function 481
TmEnumerateItems procedure 428
TmEnumerateMethods function 429
TmEnumerateSelectedGraels function 483
TmEnumerateSelectedVars function 430
TmEnumerateToolNames function 431
TmEnumerateVars function 432
TmExecuteGraelMethod procedure 484
TmExecuteMethod procedure 433
TmExport procedure 435
TmExportSelection procedure 436
TmGetAttribute function 437
TmGetGraelMethod function 485
TmGetGraelRectangle function 486
TmGetMessage function 151, 439
TmGetMethod function 441
TmGetTop function 442
TmGetUniqueGraelName function 487
TmGetUniqueToolName function 126, 443
TmGetVarMainName function 444
TmGroupGraels function 488
TmInit procedure 445
TmLegend procedure 489

TmLine procedure 490
TmList function 446
TmListAppend procedure 447
TmListClear procedure 448
TmListDelete procedure 449
TmListDestroy procedure 450
TmListExtend procedure 451
TmListGetMethod function 452
TmListInsert procedure 455
TmListReplace procedure 456
TmListRetrieve function 458
TmListSetMethod procedure 459
TmPaste procedure 461
TmRect procedure 492
TmRegister procedure 462
TmRestoreTemplate function 463
TmRestoreTools function 464
TmSaveTools procedure 465
TmSetAttribute function 466
TmSetGraelMethod procedure 493
TmSetGraelRectangle procedure 494
TmSetMethod procedure 468
TmStartCodegen procedure 469
TmText procedure 495
TmTopGrael procedure 497
TmUngroupGraels procedure 498
TmUnregister procedure 470
TM_CODEGEN method 133
TM_CONVERT method 133
TM_DATA_EXPORT method 133
TM_DATA_IMPORT method 133
TM_DATA_SELECTION method 133
TM_DISPLAY method 133
TM_VARATTRIBUTES method 133
TM_VIEWATTRIBUTES method 133

U
UNIX operating system

avoiding shells with SPAWN
procedure 11

CALL_UNIX 59
commands from within PV-WAVE

3–7
compiling for LINKNLOAD 33, 35
environment, description of 2
pipe, description of 19
shells 9

UNIX_LISTEN function 68, 71, 84

6 Application Developer’s Guide

UNIX_REPLY function 68, 72, 84
unnamed structures

defining menu items with 176–177
uses for 220

UT_VAR 81, 84

V
variables

passing 207
VDA Tools

See also VDA Tools Manager; VDA Tools
Utilities; Navigator

advantages 160
architecture 124
attributes, getting and setting 134
components of 130
directory structure 126
disadvantages 160
exporting variables from 141
graphical elements

API routines 138
definition of 136
embedded text in text grael 496
manipulating 137

intertool communication 123, 141
items

definition of 134
list of standard 135

localizing 581
main features 121–124
methods

definition of executing 131
definition of registering 131
list of standard 132
TM_CODEGEN 133
TM_CONVERT 133
TM_DATA_EXPORT 133
TM_DATA_IMPORT 133
TM_DATA_SELECTION 133
TM_DISPLAY 133
TM_VARATTRIBUTES 133
TM_VIEWATTRIBUTES 133

online help 124, 140
unique names of 130
user interface 139
variables, manipulating 134

VDA Tools Manager
See also VDA Tools Utilities; VDA Tools

adding graphical elements
to graphical element list 473
tographicalelementselection list

474
adding variables

to a VDA Tool 415
to selected variables list 413

API, functional listing 129
attributes

enumerating 426
getting value for 437
listing 426
setting 466

code generation file
closing 425
opening 469
writing 416

coordinates, of rectangular boundary
486

copying graphics to clipboard 417
deleting

graphical element from associat-
ed list 479

graphical element from selected
list 480

graphics 418, 420
variables 419, 421
VDA Tool from registry 470

display list
bottom graphical element 478
top graphical element 497

executing
a method 433, 484
graphical element method 484

exporting
variable selection list 436
variables 435

files
closing code generation 425
code generation 416
opening for code generation

469
functions and procedures, core 413
graphical elements 473
grouping graphical elements 488
initializing 445
items

enumerating 428
listing 428

 7

listing
attributes 426
graphical elements on selection list

483
graphical elements set for a VDA Tool

482
items 428
methods set for a graphical element

481
methods set for a VDA Tool 429
registered VDA Tool names 431
variables from a VDA Tool 432, 487

message strings 439
methods

enumerating 429, 481
executing 433
getting data structure 441, 485
setting 468
setting name 493

names
enumerating VDA Tool names 431
unique for graphical element 487
variables in a VDA Tool 432

pasting from clipboard 461
purpose of 126
rectangular boundary coordinates 486,

494
registering a VDA Tool 462
restoring

template 463
VDA Tool 464

saving VDA Tools 465
setting

attributes 466
graphical elements method 493
method 468
selection rectangle 494

top-level widget ID 442
ungrouping graphical elements 498
unique VDA Tool names 443–444
unregistering a VDA Tool 470
variables

enumerating 430, 432
exporting 435–436
extracting names 432
listing selected 430

widget ID, getting 442
writing to code generation file 416

VDA Tools Utilities

See also VDA Tools Manager; VDA
Tools

adding
buttons to button bar 499
color table button 513
dialog box 538
message text 502

button bar
adding buttons 499
button sensitivity 511
changing a button’s setting

510
creating 506

color index
getting from a color button 517
setting 518

color table button 513
definition of 139
dialog box

creating 538
restoring status 530
saving status 530

file checking 512
font option menu 533–537
linestyle option menu 547, 550
loading resources and strings 551,

554
location of 139
menu

bar 556
fonts 533
item sensitivity 563
linestyles 547, 550
variables 575, 578

messages
adding hardcoded text 502
creating area for 566
dialog box status 530
stored in resource files 551

resource files, loading for VDA tools
551, 554

setting
button sensitivity 511
color index 518
fonts in option menu 537
sensitivity of a menu item 563

text widgets 544
variables

creating menu of 575

8 Application Developer’s Guide

getting from menu 577
setting option menu 578

virtual keys (Windows) E-1
VMS operating system

command interpreter 9
commands from within PV-WAVE 5–7
logicals and symbols 5–6

W
WAVE Widgets

See also callback; Widget Toolbox
active buttons for callback 176
alert box

creating 233
destroying 237

application example 211
arranging layout 169
attaching widgets 170–172
blocking vs. nonblocking window 194
bulletin board layout 170
button box 179, 238
buttons, event handling 267
color support for F-1
combining with Widget Toolbox 218
command widget 243
creating

basic steps for 163
command widget 198
drawing area 184, 255
file selection widget 196
popup menu 175
popup messages 191
scrolling list 189–190, 283
table widget 200
tables 339
top-level window 291
widget hierarchy 166, 173

cursor setting 335
definition of widget 161
dialog box 194–195, 252, 262
event handler 275, 304
event loop 210
file selection box 196–197, 259
form layout 170
getting values 206
graphical icon buttons 176, 179, 358
hiding 209
hierarchy

definition of 166
displaying 210
ID representation 167

icon use in menu 178
ID representation 167
initializing 164, 276
introduction to 161
keys, ASCII values 268
layout 166, 169–173, 279
list of widget types 167–168
loading resources 151
locating selected point coordinate

270
location in directory 161
managing widgets

destroying the shell 207
show/hide 209
user data 207

message buttons 192
Motif GUI 157
multi-line text window 188
option menu 175
passing user-defined data 207
popup menu 174, 176, 312
popup widget 169, 191, 194, 196,

199
preview widget 315, 324
radio box buttons 181
resource database for widgets 330
scrolling list 189–190, 283
sensitivity 209
separator 332
setting

colors 201
fonts 203
resources 205
values 206

showing 209
single-line editable field 187
single-line read-only label 187
sliders 182–183, 247
submitting routines to Users’ Library

162
table widget 200
text widget 352
timer registration 357
toggle buttons in menus 176
toolbox buttons 179
user data

 9

defining and passing 207
destroying the shell 207

widget definition 161
Windows GUI 157
with OpenVMS 24-bit display hardware

157
wavecmd routine 24–26
waveinit routine 23
wavevars function

accessing data in PV-WAVE 50, 109
description of 97
examples 53–57, 112
parameters 51, 109
syntax 29, 97, 109

Widget Toolbox
See also callback; WAVE Widgets
adding

callbacks 222
event handlers 223, 366
timers 225

callback parameters for Motif B-1
class 219
combining with WAVE Widgets 218
convenience widgets, Motif A-3
creating widgets 219
cursors C-1–C-5
defining keyboard keys 386
event handler 223, 366
event loop 57, 114, 228, 394
example application 229
hierarchy

destroying and closing 221
displaying 221

ID representation 219
include files 229
initializing 219
loading resources 151
managing widgets 221
pointer function 224, 390
preview window 392
realizing a widget 221
resource database for widgets 396
resources

getting 220
retrieving 374
setting 220, 398

running an application 228
24-bit hardware 218
widget classes, Motif A-1

Windows events 366
X events 366

widget. See WAVE Widgets; Widget
Toolbox

window
index 184
resizing 59, 115

Windows F-1
console vs. subsystem applications

119
GUI development 157
interapplication communication 93
system color F-1
system fonts F-3

WoAddButtons procedure 499
WoAddMessage procedure 502
WoAddStatus function 503
WoBuildResourceFilename function

504
WoButtonBar function 506
WoButtonBarSet procedure 510
WoButtonBarSetSensitivity procedure

511
WoCheckFile function 512
WoColorButton function 513
WoColorButtonGetValue function 517
WoColorButtonSetValue procedure 518
WoColorConvert function 518
WoColorGrid procedure 520
WoColorGridGetValue procedure 523
WoColorGridSetValue procedure 524
WoColorWheel function 525
WoConfirmClose procedure 528
WoDialogStatus procedure 530
WoFontOptionMenu function 533
WoFontOptionMenuGetValue function

536
WoFontOptionMenuSetValue function

537
WoGenericDialog function 538
WoGetToolNameFromTitle function

542
WoGetUniqueWindowTitle function 543
WoLabeledText function 544
WoLinestyleOptionMenu function 547
WoLinestyleOptionMenuGetValue

function 549
WoLineStyleOptionMenuSetValue

procedure 550

10 Application Developer’s Guide

WoLoadResources procedure 151, 551
WoLoadStrings procedure 151, 554
WoMenuBar function 556
WoMenuBarSetSensitivity function 563
WoMenuBarSetToggle procedure 565
WoMessage function 566
WoSaveAsPixmap procedure 568
WoSetCursor procedure 569
WoSetToolIcon procedure 570
WoSetWindowTitle procedure 572
WoStatus function 573
WoVariableOptionMenu function 575
WoVariableOptionMenuGetValue function

577
WoVariableOptionMenuSetValue procedure

578
WtAddCallback function 222, 363
WtAddHandler function 223, 365
WtClose function 221, 368
WtCreate function 218, 219, 370
WtCursor function 372
WtGet function 374
WtInit function 218, 276, 378
WtInput function 381
WtList function 383
WtLookupString function 386
WtLoop function 228
WtLoop procedure 387
WtMainLoop function 389
WtPointer function 390
WtPreview function 392
WtProcessEvent function 394
WtResource function 151, 396
WtSet function 218, 398
WtTable function 401
WtTimer function 225, 408
WtWorkProc function 410
WwAlert function 233
WwAlertPopdown procedure 237
WwButtonBox function 180, 238
WwCallback function 242
WwCommand function 198, 243
WwControlsBox function 183, 247
WwDialog function 194, 252
WwDrawing function 184, 255
WwFileSelection function 196, 259
WwGenericDialog function 262
WwGetButton function 267
WwGetKey function 268

WwGetPosition function 270
WwGetValue function 206, 272
WwHandler function 275
WwInit function 164, 276
WwLayout function 169, 279
WwList function 189, 283
WwListUtils function 287
WwLoop function 164, 290
WwMainWindow function 166, 291
WwMenuBar function 174, 294
WwMenuItem function 298
WwMessage function 191, 300
WwMultiClickHandler function 304
WwOptionMenu function 175, 306
WwPickFile function 310
WwPopupMenu function 175, 312
WwPreview procedure 315
WwPreviewUtils function 324
WwRadioBox function 181, 325
WwResource function 330
WwSeparator function 332
WwSetCursor function 335
WwSetValue function 206, 336
WwTable function 339
WwTableUtils function 346
WwText function 186, 352
WwTimer function 357
WwToolBox function 180, 358
w_cmpnd_reply function 63, 66
w_get_par function 64
w_listen function 64
w_send_reply function 63, 65
w_smpl_reply function 63, 65

X
X server

connecting to 164
X Window System

resources 204
.Xdefaults file 205
Xlib 158
Xt Intrinsics 158, 164, 219
Xt TimeOut function 224

	PV-WAVE Application Developer's Guide
	Table of Contents
	Preface
	What’s in this Manual
	Conventions Used in this Manual
	Technical Support
	FAX and E-mail Inquiries
	Electronic Services

	1- Accessing the Operating System
	Manipulating Environment Variables
	UNIX Environment Variables
	Windows Environment Variables
	SETENV: Adding a New Environment Variable
	GETENV: Getting an Environment Variable’s Equivalence String
	ENVIRONMENT: Getting the Values of All Environment Variables

	Manipulating OpenVMS Logicals and Symbols
	SETLOG: Defining a New Logical
	TRNLOG: Getting a Logical’s Equivalence String
	DELLOG: Deleting a Logical
	SET_SYMBOL: Defining a Symbol
	GET_SYMBOL: Getting a Symbol’s Value
	DELETE_SYMBOL: Deleting a Symbol

	Accessing the Operating System Using SPAWN
	Using SPAWN to Issue Commands
	Interactive Use of SPAWN
	UNIX Shells
	VMS Command Interpreter
	Avoiding the Command Prompt Window (Windows)
	Non-interactive Use of SPAWN
	Avoiding the Shell under UNIX
	Capturing Output

	Changing the Current Working Directory
	Using the CD Procedure
	Using the PUSHD, POPD, and PRINTD Procedures

	2 - Interapplication Communication for UNIX and OpenVMS
	Methods of Interapplication Communication
	Choosing the Best Method
	Interapplication Communication Using SPAWN
	Communicating with a Child Process
	Example: Communicating with a Child Process Using SPAWN

	Executing PV-WAVE Commands Externally
	Compiling the External Program
	Starting PV-WAVE from an External Program with waveinit
	Sending Commands to PV-WAVE with wavecmd
	Ending the Session with PV-WAVE with waveterm
	Example: Calling PV-WAVE from a C Program
	Example: Calling PV-WAVE from a FORTRAN Program

	Using LINKNLOAD to Call External Programs
	Usage
	Parameters
	Discussion
	Accessing the Data in PV-WAVE Variables
	Example 1: Calling a C Program
	Example 2: Calling a FORTRAN Program
	Example 3
	Example 4

	Calling PV-WAVE in a Statically Linked Program
	cwavec: Calling PV-WAVE from a C Program
	cwavefor: Calling PV-WAVE from a FORTRAN Program
	How to Link Applications to PV-WAVE

	Using wavevars() to Access PV-WAVE Variables
	Special Considerations for Noninteractive Applications
	Using Nonblocking PV-WAVE Widgets
	Window Resizing

	Communication with Remote Procedure Calls (UNIX Only)
	Remote Procedure Call (RPC) Technology
	Synchronization of Client and Server Processes
	Linking a Server or a Client with PV-WAVE
	Using PV-WAVE as a Client: CALL_UNIX
	Description of C Functions Used with CALL_UNIX
	Example Server
	Example Using CALL_UNIX
	Using PV-WAVE as a Server: CALL_WAVE
	Description of C Functions Used with PV-WAVE as Server
	PV-WAVE Functions Used with PV-WAVE as Server
	Examples Using PV-WAVE as a Server

	Remote Procedure Call Examples
	Interapplication Communication Using the Socket OPI
	Overview of a Client-Server Model Using Sockets
	Loading the Socket OPI
	Initializing a Socket
	Listening for a Socket Connection
	Connecting to a Socket
	Reading and Writing Data Between Client and Server
	Closing a Socket Connection
	Example
	Writing a Continuously Running Server

	3 - Interapplication Communication for Windows
	Methods of Interapplication Communication
	Choosing the Best Method
	Using LINKNLOAD to Call External Programs
	Usage
	Parameters
	Discussion
	Accessing the Data in PV-WAVE Variables
	Example 1: Calling a C Program

	Calling PV-WAVE as a Dynamically Linked Program
	cwavec: Calling PV-WAVE from a C Program
	Accessing the Data in PV-WAVE Variables
	Ending the Session with PV-WAVE
	Running PV-WAVE from a C Program
	Example 1: Execute PV-WAVE Commands From C Program
	cwavefor: Calling PV-WAVE from a FORTRAN Program

	Accessing Data in PV-WAVE Variables
	Usage
	Parameters
	Returned Value
	Discussion
	Using wavevars to Retrieve Data from PV-WAVE
	Using the Option Programming Interface
	Loading PV-WAVE Dynamically into an Application

	Special Considerations for Noninteractive Applications
	Using Nonblocking PV-WAVE Widgets
	Window Resizing

	Using Dynamic Data Exchange (DDE)
	Overview of DDE Support in PV-WAVE
	Initializing PV-WAVE as a DDE Server
	Which DDE Topics Are Available?
	Which Data Formats Are Available?
	Communicating with a Windows Application Written in C

	Console Versus Windows Subsystem Applications
	PV-Wave As a Console Application
	PV-Wave As a Home Window Application
	Sample Applications are Available
	Additional Documentation

	4 - Building VDA Tools
	What Are VDA Tools?
	Multiple Instances from Same Source Code
	Intertool Communication
	Called from the Command-line
	Non-blocking
	Code Generation
	Easy to Save and Restore
	Portable
	Native Look and Feel
	Easy to Build and Customize
	Online Help

	A Technical Perspective on VDA Tools
	What is the VDA Tools Manager?
	The Tools Manager API

	VDA Tool Ingredients
	VDA Tools Require Unique Names
	Methods Drive VDA Tools
	Manipulating Variables and Other Items
	Manipulating Graphical Elements
	User Interface

	VDA Utilities
	Connecting to Online Help
	Example

	Tool-to-Tool Communication Routines
	The Selection List
	Exporting Variables from $MAIN$
	VDA Tools Can Accept or Reject Exported Variables

	Creating Optional Areas in VDA Tools
	Modify the Menu Structure
	Adjust the Menu Pane Number
	Set the Status of the Option Menu Toggles
	Call WoGMBOptionsInit
	Implementation for Optional Message Area
	Implementation for Optional Button Bar
	Implementation for Optional Controls Area

	Creating a Navigator
	The PV-WAVE Navigator
	PV-WAVE Navigator Files
	Modifying the PV-WAVE Navigator
	Creating a New Navigator
	Resources for the Navigator

	Resources and Strings
	Resources
	Strings

	Using Resources and Strings in PV-WAVE Applications
	Widget Resource Files
	String Files

	Adding Online Help
	Online Help Implementation Overview
	Adding Online Help without Hyperhelp or WinHelp Software

	5 - Using WAVE Widgets
	Methods of GUI Programming in PV-WAVE
	WAVE Widgets and the Widget Toolbox
	Windows Advanced Controls Library

	Introduction to WAVE Widgets
	Who Uses WAVE Widgets
	WAVE Widgets are Standard Library Functions
	Designing Your Own WAVE Widgets
	WAVE Widgets are Portable

	First Example and Basic Steps
	First Example
	The Basic Steps

	Initializing WAVE Widgets
	Example

	Creating and Arranging WAVE Widgets
	The Widget Hierarchy
	Types of WAVE Widgets
	Arranging Widgets in a Layout

	Creating and Handling Menus
	Menu Bar
	Popup Menu
	Option Menu
	Menu Callbacks
	Defining Menu Items with Unnamed Structures
	Modifying Menu Items
	Example

	Creating a Button Box and a Tool Box
	Button Box Example
	Tool Box Example

	Creating a Radio Box
	Creating a Controls Box with Sliders
	Creating a Drawing Area
	Creating a Text Widget
	Single-line Label (Read-only)
	Single-line Editable Text Field
	Multi-line Text Window

	Creating a Scrolling List
	Selection Mode
	Scrolling List Callbacks

	Creating Popup Messages
	Blocking vs. Nonblocking Windows
	Types of Message Windows
	Default Message Box Buttons
	Message Box Example

	Creating Dialog Boxes
	A Dialog is a Popup Widget
	Blocking vs. Nonblocking Windows
	Default Dialog Box Buttons
	Dialog Box Example

	Creating a File Selection Widget
	A File Selection Widget is a Popup Widget
	Blocking vs. Nonblocking Windows
	File Tool Contents
	File Selection Example

	Creating a Command Widget
	Example

	Creating a Table Widget
	Setting Colors and Fonts
	Setting Colors
	Setting Fonts on UNIX and OpenVMS
	Setting Fonts on Windows
	Using a Resource File to Set Colors and Fonts

	Setting and Getting Widget Values
	Passing and Retrieving User Data
	Example

	Managing Widgets
	Showing/Hiding Widgets
	Widget Sensitivity

	Displaying Widgets and Processing Events
	Programming Tips and Cautions
	PV-WAVE Routines to Avoid
	PV-WAVE Routines to Use with Caution

	Application Example

	6 - Using the Widget Toolbox
	Introduction to the Widget Toolbox
	Basic Steps in Creating the GUI
	Combining WAVE Widgets and Widget Toolbox Functions

	Initializing the Widget Toolbox
	Creating Widgets
	Setting and Getting Resources
	Managing, Displaying, and Destroying Widgets
	Adding Callbacks (Motif Only)
	Adding Event Handlers
	Example

	Adding Timers
	Example

	Adding Work Procedures
	Adding Input Handler Procedures (Motif Only)
	Changing the Cursor
	Creating Tables
	Running an Application
	Related Include Files
	Example Widget Toolbox Application
	Programming Tips and Cautions

	7 - WAVE Widgets Reference
	WwAlert Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Get/Set Value
	Callback Parameters
	Discussion
	Example
	See Also

	WwAlertPopdown Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WwButtonBox Function
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Output Keywords
	Get/Set Value
	Callback Parameters
	Discussion
	Example 1
	Example 2
	See Also

	WwCallback Function (Motif Only)
	Usage
	Input Parameters
	Returned Value
	Keywords
	Callback Parameters
	Discussion
	See Also

	WwCommand Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Get/Set Value
	Callback Parameters
	Discussion
	Example 1
	Example 2
	See Also

	WwControlsBox Function
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Output Keywords
	Get/Set Value
	Callback Parameters
	Discussion
	Example 1
	Example 2
	See Also

	WwDialog Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Get/Set Value
	Callback Parameters
	Discussion
	Example 1
	Example 2
	See Also

	WwDrawing Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Get/Set Value
	Callback Parameters
	Discussion
	Example
	See Also

	WwFileSelection Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Get/Set Value
	Callback Parameters
	Discussion
	Example
	See Also

	WwGenericDialog Function
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Callback Parameters and Returned Value
	Returned Values
	Discussion
	Example
	See Also

	WwGetButton Function
	Usage
	Input Parameter
	Returned Value
	Keyword
	Discussion
	Example
	See Also

	WwGetKey Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WwGetPosition Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	Callback Procedures
	Widget Commands
	See Also

	WwGetValue Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	Callback Procedures
	Widget Commands
	See Also

	WwHandler Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Event Handler Parameters
	Discussion
	Example
	See Also

	WwInit Function
	Usage
	Input Parameters
	Output Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WwLayout Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Get/Set Value
	Callback Parameters
	Discussion
	Example
	See Also

	WwList Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Get/Set Value
	Callback Parameters
	Discussion
	Example 1
	Example 2
	See Also

	WwListUtils Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	WwLoop Procedure
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WwMainWindow Function
	Usage
	Input Parameters
	Output Parameters
	Returned Value
	Keywords
	Get/Set Value
	Callback Parameters
	Discussion
	Example
	See Also

	WwMenuBar Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Get/Set Value
	Callback Parameters
	Example
	See Also

	WwMenuItem Function
	Usage
	Input Keywords
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WwMessage Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Color/Font Keywords
	Get/Set Value
	Callback Parameters
	Discussion
	Example 1
	Example 2
	See Also

	WwMultiClickHandler Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Event Handler Parameters
	Discussion
	Example
	Event Handler and Callback Procedures
	Widget Commands
	See Also

	WwOptionMenu Function
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Output Keywords
	Get/Set Value
	Callback Parameters
	Discussion
	Example 1
	Example 2
	See Also

	WwPickFile Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WwPopupMenu Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Color/Font Keywords
	Get/Set Value
	Callback Parameters
	Discussion
	Example
	See Also

	WwPreview Procedure
	Usage
	Input Parameters
	Keywords
	Get/Set Value
	Confirm Callback Parameters
	Clear Callback Parameters
	Discussion
	Example
	See Also

	WwPreviewUtils Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	See Also

	WwRadioBox Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Get/Set Value
	Callback Parameters
	Discussion
	Example 1
	Example 2
	See Also

	WwResource Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Examples
	See Also

	WwSeparator Function
	WwSetCursor Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	WwSetValue Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WwTable Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Get/Set Value
	Callback Parameters
	Discussion
	Example 1
	Example 2
	See Also

	WwTableUtils Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Examples
	(1) Add rows to a table
	(2) Delete rows from a table
	(3) Add columns to a table
	(4) Delete columns from a table
	(5) Get visible cells
	(6) Set the value of an individual cell
	(7) Redraw a cell
	(8) Deselect all cells
	(9) Select a cell
	(10) Make a cell visible
	See Also

	WwText Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Get/Set Value
	Callback Parameters
	Discussion
	Example 1: Single-line Text Field and Label
	Example 2: Multi-line Text Window
	See Also

	WwTimer Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Timer Procedure Parameters
	Discussion
	Example
	See Also

	WwToolBox Function
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Output Keywords
	Get/Set Value
	Callback Parameters
	Discussion
	Example
	See Also

	8 - Widget Toolbox Reference
	WtAddCallback Function (Motif Only)
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WtAddHandler Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WtClose Function
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example
	Callback Procedure Example: Motif
	See Also

	WtCreate Function (Motif Only)
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WtCursor Function
	Usage
	Parameters
	Returned Value
	Discussion
	Example
	See Also

	WtGet Function
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WtInit Function
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WtInput Function (Motif Only)
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WtList Function
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	WtLookupString Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Examples
	See Also

	WtLoop Procedure
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Motif Example

	WtMainLoop Function
	Usage
	Input Parameters
	Output Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	WtPointer Function
	Usage
	Parameters
	Returned Value
	Discussion
	Example
	See Also

	WtPreview Function
	Usage
	Input Parameters
	Discussion
	XvnPreview Widget Documentation
	Example
	See Also

	WtProcessEvent Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WtResource Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Examples
	See Also

	WtSet Function
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WtTable Function
	Usage
	Input Parameters
	Discussion
	Example
	See Also

	WtTimer Function
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WtWorkProc Function
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	9 - VDA Tools Manager API (Tm)
	TmAddSelectedVars Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmAddVar Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmCodeGen Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmCopy Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmCut Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmDelVar Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmDelete Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmDeselectVars Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmDynamicDisplay Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmDynamicShowVars Procedure
	Usage
	Parameters
	Keywords
	Discussion

	TmEndCodeGen Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmEnumerateAttributes Function
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	TmEnumerateItems Function
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	TmEnumerateMethods Function
	Usage
	Parameters
	Returned Value
	Example
	See Also

	TmEnumerateSelectedVars Function
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	TmEnumerateToolNames Function
	Usage
	Parameters
	Returned Value
	Keywords
	Example
	See Also

	TmEnumerateVars Function
	Usage
	Parameters
	Returned Value
	Discussion
	Example
	See Also

	TmExecuteMethod Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmExport Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmExportSelection Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmGetAttribute Function
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	Example 3
	See Also

	TmGetMessage Function
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	TmGetMethod Function
	Usage
	Parameters
	Returned Value
	Discussion
	Example
	See Also

	TmGetTop Function
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	TmGetUniqueToolName Function
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	TmGetVarMainName Function
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	TmInit Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmList Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	TmListAppend Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	TmListClear Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	TmListDelete Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	TmListDestroy Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	TmListExtend Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	TmListGetMethod Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	TmListInsert Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	TmListReplace Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	TmListRetrieve Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	TmListSetMethod Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	TmPaste Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmRegister Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmRestoreTemplate Function
	Usage
	Parameters
	Keywords
	Returned Value
	Discussion
	Example
	See Also

	TmRestoreTools Function
	Usage
	Parameters
	Keywords
	Returned Value
	Discussion
	Example
	See Also

	TmSaveTools Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmSetAttribute Function
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	TmSetMethod Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Method Call Procedure Parameters
	Example
	See Also

	TmStartCodeGen Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmUnregister Procedure
	Usage
	Parameters
	Keywords
	Example
	See Also

	10 - Graphical Elements API (Tm)
	TmAddGrael Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmAddSelectedGrael Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmAxis Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmBitmap Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmBottomGrael Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmDelGrael Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmDelSelectedGraels Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmEnumerateGraelMethods Function
	Usage
	Parameters
	Returned Value
	Keywords
	Example
	See Also

	TmEnumerateGraels Function
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	TmEnumerateSelectedGraels Function
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	TmExecuteGraelMethod Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmGetGraelMethod Function
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	TmGetGraelRectangle Function
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	TmGetUniqueGraelName Function
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	TmGroupGraels Function
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	TmLegend Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmLine Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmRect Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmSetGraelMethod Procedure
	Usage
	Parameters
	Keywords
	Example
	See Also

	TmSetGraelRectangle Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmText Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Embedded Functions in Text Graels
	Example 1
	Example 2
	See Also

	TmTopGrael Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	TmUngroupGraels Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	11 - VDA Tools Utilities (Wo)
	WoAddButtons Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WoAddMessage Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WoAddStatus Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WoBuildResourceFilename Function
	Usage
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WoButtonBar Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WoButtonBarSet Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WoButtonBarSetSensitivity Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WoCheckFile Function
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Output Keyword
	Example

	WoColorButton Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Attachment Keywords
	Discussion
	Contents of the Colortable Dialog Box
	Example
	See Also

	WoColorButtonGetValue Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	WoColorButtonSetValue Function
	Usage
	Input Parameters
	Keywords
	Example
	See Also

	WoColorConvert Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WoColorGrid Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WoColorGridGetValue Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WoColorGridSetValue Procedure
	Usage
	Input Parameters
	Keywords
	Example
	See Also

	WoColorWheel Function
	Usage
	Parameters
	Keywords
	Returned Value
	Callback Parameters
	Discussion
	Example

	WoConfirmClose Procedure
	Usage
	Input Parameters
	Input Keywords
	Output Keywords
	Discussion
	Example 1
	Example 2
	See Also

	WoDialogStatus Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WoFontOptionMenu Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WoFontOptionMenuGetValue Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WoFontOptionMenuSetValue Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WoGenericDialog Function
	Usage
	Input Parameters
	Output Parameters
	Returned Value
	Keywords
	Callback Parameters
	Discussion
	Example
	See Also

	WoGetToolNameFromTitle Function
	Usage
	Input Parameters
	Keywords
	Example
	See Also

	WoGetUniqueWindowTitle Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WoLabeledText Function
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Output Keywords
	Attachment Keywords
	Discussion
	Example
	See Also

	WoLinestyleOptionMenu Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Attachment Keywords
	Discussion
	Example
	See Also

	WoLinestyleOptionMenuGetValue Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WoLinestyleOptionMenuSetValue Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WoLoadResources Procedure
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WoLoadStrings Procedure
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WoMenuBar Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Attachment Keywords
	Discussion
	Example 1
	Example 2
	See Also

	WoMenuBarSetSensitivity Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WoMenuBarSetToggle Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WoMessage Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Attachment Keywords
	Examples
	Example 1
	Example 2
	Example 3
	See Also

	WoSaveAsPixmap Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example

	WoSetCursor Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	WoSetToolIcon Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example

	WoSetWindowTitle Procedure
	Usage
	Input Parameters
	Keywords
	Example
	See Also

	WoStatus Function
	Usage
	Input Parameters
	Returned Value
	Keyword
	Attachment Keywords
	Examples
	Example 1
	Example 2
	See Also

	WoVariableOptionMenu Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Attachment Keywords
	Discussion
	Example
	See Also

	WoVariableOptionMenuGetValue Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	WoVariableOptionMenuSetValue Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	12 - Localizing PV-WAVE Applications
	Localizing the VDA Tools
	Copy and Translate Resource and String Files
	How PV-WAVE Determines the Locale

	Localizing the PV-WAVE Home Window
	View the Resources
	Localize Your Resources

	Localizing the PV-WAVE Print Dialog Box
	View the Resources
	Localize Your Resources

	A - Motif Widget Classes
	Motif Widget Classes
	Convenience Widgets

	B - Motif Callback Parameters
	Motif Callback Parameters
	Required Callback Parameters
	Additional Required Callback Parameters

	C - Widget Toolbox Cursors
	Standard X Cursors
	Custom Cursors

	D - Developing Portable Applications
	Writing Portable WAVE Widgets Applications
	Commands and Filenames
	WwGetKey Routine
	Specifying WAVE Widget Fonts
	Display Sizes
	Windows Graphics

	Writing Portable VDA Tools
	VDA Utilities and Tools Manager Routines
	VDA Tools Resource Files

	Writing System-specific Code
	Example Code

	E - Virtual Keys
	F - Windows Color and Font Support
	Predefined Colors for Windows Systems
	Setting Fonts on Windows

	Index

